CDC®VSOS VERSION 2

FOR USE WITH
- CYBER 200 SERIES
COMPUTER SYSTEM

Volume 1 of 2

- REFERENCE MANUAL | @E

CONTROL
DATA

60459410

VSOS CONTROL STATEMENT INDEX

- This index lists each VSOS control statement and interactive request line and the number of
the page on which it is described. :

ATTACH ’ 4-13 PCREATE : 4-100
AUDIT 4-15 PDELETE 4-101
BEGIN 4-6.3 " PDESTROY : 4-102
CHARGE ') 4=21 PDETACH 4-102
COMMENT 4-22 PERMIT 4-103
COMPARE 4-23 PFILES 4-105
COPY 4-25 PROC 4-6.3
COPYL 4-28 PROCEED 4-106
DAYFILE 4-30 PURGE 4-106.1
DEFINE 4-30.1 Q 4-107
DEBUG 6-2 REQUEST 4-112.1
DIVERT 4-34 RERUN 4-120
DMAP 4-34,2 RESOURCE 4-121
DROP 4-36 RETURN 4-124
DUMP 6-23 REWIND 4-126
DUMPF 4-36.2 SET 4-127
EDITPUB 4~46 SKIP 4-128.1
ELSE 4-6.2 SLGEN 4=-129
ENDIF 4-6.2 SUBMIT 4-132
EXIT 4-48 SUMMARY 4~134
FILES 4-49 SWITCH 4-136
GIVE 4-53 TASKATT 4-139
IF 4-6.1 v 4-140
LABEL 4-55 UPDATE 5-1
LIMITS 4-60.1 USER' 4=142
LISTAC 4-61 $BB 3-8
LOAD 4-65 $BYE 3-10.1
LOADPF 4-80 $HELLO 3-10.1
LOGIN v 3-6 $1 3-10
LOOK 6-13 $LC 3-9
MFGIVE 3-25 $OP 3-10
MFLINK 4-88 $P 3-8
MFQUEUE 4-91 $PR ’ 3-8
MFTAKE 3-25 $s 3-8
NORERUN 4-93 $su 3-8
OLE 4=94 $T 3-8
PACCESS 4-97 s$uc 3-9
PASSWORD 4-98 $X 3-9

PATTACH 4-99 $? 3-8

60459410 J

CDC®VSOS VERSION 2

FOR USE WITH
CYBER 200 SERIES
COMPUTER SYSTEM

Volume 1 of 2

REFERENCE MANUAL @ E

CONTROL
DATA

60459410

REVISION RECORD

REVISION DESCRIPTION

A Manual released.
(04~16-82)

Manual revised to reflect VSOS 2.0 CCR changes (level 575). New features documented include the
(10-15-82) GDWC LOAD parameter, individual access permission sets, and conversion routines for CYBER 170
arithmetic data formats.

C Manual revised to reflect VSOS 2.1 PSR level 592 changes. New features include on-line magnetic
(07-29-83) tape support, the DAYFILE control statement, and the QS5MEMORY subroutine. Because extensive changes
have been made, change bars and dots are not used and all pages reflect the latest revision level.
This edition obsoletes all previous revisions.

D Manual revised to reflect VS0S 2.1.5 PSR level 607 changes. New features include the SUBMIT control
(03-30-84) statement, additions to the DEBUG directives and additions to the error messages. Due to extensive
changes, change bars and dots are not used and all pages reflect the latest revision level. This
edition obsoletes all previous editions.

E Manual revised to reflect VSOS 2.2 PSR level 644 changes. New features include project tracking,
(10-31-85) small job throughput, multiple batch jobs per user, dynamic file allocation and device overflow,
system channel expander, and rejected queue files. CYBER 200 FORTRAN is no longer supported. Due
to extensive changes, change bars and dots are not used and all pages reflect the latest revision
level. This edition obsocletes all previous editions.

F Manual revised to reflect VSOS 2.2.5 PSR level 654 changes. Changes documented are small job
(04~18-86) throughput improvement, explicit I/0 performance, automatic job category selection and job
pre—abort, MFQUEUE improvements, on-line DUMPF, purge files by access date, and LIMITS control
statements for restricting tape usage via validation.

G Manual revised to reflect VSOS 2.3 PSR level 670, New features described include drop file map
(12-05-86) overflow reduction and on/off RHF NADs. This revision also includes updates to control statements,
SIL calls, and messages. This edition obsoletes all previous editions.

H Manual revised to reflect VSOS 2.3.5 at PSR level 690. This revision documents managing production
(10~-23-87) files at security-sensitive sites, and the new ELSE, ENDIF, IF, DIVERT, and DROP control
statements. It also includes updates to existing control statements and SIL subroutines/routines,
and changes to the queue file transfer procedures.

J Manual revised to reflect VSOS 2.3.7 at PSR level 712.
(11-15-88)

Publication No.
60459410

REVISION LETTERS 1,0, Q, S, X AND Z ARE NOT USED.

Address comments concerning this
manual to:

Control Data Corporation
Technology and Publications Division

© 1982, 1983, 1984, 1985, 1986, 1987, 1988 4201 North Lexington Avenue

by Control Data Corporation St. Paul, Minnesota 55126-6198
All rights reserved

Printed in the United States of America or use Comment Sheet in the back of

this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot

near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE R%XJ L’ PAGE
Front Cover - 2-31 E 4-11
Inside Front 2-32 E 4-12

Cover J 2-33 E 4-13
Title Page - 2-34 F 4-14
2 J 2-35 J 4-15
3 J 2-36 J 4-16
4 J 2-36.1/2-36.2| J 4-16.1
5/6 J 2-37 G 4-16.2
7 F 2-38 E 4~17
8 E 3-1 H 4-18
9/10 E 3-2 E 4-19
11 J 3-3 E 4-20
12 J 3-4 H 4-21
13 J 3-5 E 4-22
14 J 3-6 H 4-23
15 J 3-7 G 4-24
16 J 3-8 G 4-25
17 J 3-9 J 4-26
18 J 3-10 G 4-27
19 J 3-10.1/3-10.2] G 4-28
20 J 3-11 J 4-29
1~-1 E 3-12 F 4-30
1-2 E 3-13 J 4-30.1/4-30.2
1-3 G 3~14 J 4-31
1-4 G 3-15 J 4-32
1-5 G 3-16 G 4-33
1-6 F 3-17 G 4-34
2-1 E 3-18 G 4-34,1
2-2 E 3-19 F 4-34,2
2-3 H 3-20 F 4-35
2-4 E 3-21 F 4-36
2-5 E 3-22 J 4-36.1
2-6 E 3-22.1/3-22.2| H 4-36.2
2-7 J 3-23 F 4-36.3
2-8 E 3-24 G 4-37
2-9 H 3-25 F 4-38
2-10 E 3-26 H 4-38.1
2-11 E 3-27 E 4-38,2
2-12 E 3-28 G 4-39
2-13 E 3-29 H 4-40
2-14 E 3-30 G 4-40,1/4-40,.2
2-15 H 3-31 J 4-41
2-16 F 3-32 G 4-42
2-17 J 3-33 G 4-43
2~-18 E 4-1 H 4=44
2-19 E 4-2 H b-44,1/4-44,2
2-20 E 4-2,1/4-2,2 H 4-45
2-21 E 4-3 H 446
2-22 E 4-4 F 4-47
2-23 E 4-5 F 4-48
2-24 G 4-6 H 4-49
2-25 E 4-6.1 H 4-50
2-26 F 46,2 H 4-51
2-27 G 4-6.3/4-6.4 J 4-52
2-28 G 4-7 E 4-53
2-28.1/2-28.2| G 4-8 E 4-54
2-29 E 4-9 E 4-55
2-30 G 4-10 E 4-56

REV

oA OE TR E DR EdaETZooMO0 L GOG L HGOR D oo m D omEEEm

L:: PAGE REV Lﬁ PAGE REV
4-57 H 4-104 E
4-58 F 4-105 G
4-59 F 4-106 G
4-60 F 4-106.1/
4-60.1/4-60.2| H 4-106.2 G
4-61 E 4-107 E
4-62 E 4-108 H
4-63 H 4-108.1/

4-64 E 4-108.2 H
4-65 H 4-109 G
4-66 G 4-110 H
4-67 E 4-111 J
4-68 E 4-112 J
4-69 F 4-112.1/

4-70 F 4-112.2 J
4-71 G 4-113 J
4-72 H 4-114 J
4-73 H 4-115 J
4-74 G 4-116 J
4-74.1 J 4-116.1 J
4-74.2 J 4-116.2 J
4-74.3 J 4-117 F
4-75 J 4-118 E
4-76 H 4-119 J
4-77 H 4-120 E
4-78 H 4-121 J
4-78.1/4-78.2| J 4-122 J
4-79 J 4-123 E
4-80 J 4-124 E
4-81 J 4-125 E
4-82 J 4-126 E
4-82.1 J 4-127 H
4-82.2 J 4~-128 H
4-83 J 4-128.1/

4-84 H 4-128.2 G
4-84.1/4-84.2| J 4-129 F
4-85 G 4-130 F
4-86 H 4-131 E
4-86.1/4-86.2| H 4-132 H
4-87 G 4-133 H
4-88 G 4-134 E
4-88.1/4-88.2(J 4-135 E
4-89 J 4-136 E
4-90 E 4-137 E
4-91 J 4-138 E
4-92 J 4~139 G
4-92.1/4-92,2) J 4-140 E
4-93 E 4-141 E
4-94 F 4-142 J
4-95 F 5-1 E
4-96 F 5-2 E
4-97 E 5-3 E
4-98 E 5-4 G
4-99 E 5-5 J
4-100 E 5-6 F
4-101 E 5-7 G
4-102 F 5-8 G
4-103 H 5-9 G

60459410 J

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV
5-10 E 8-13 G 8-84 E 9-58 J 9-58 J
5-11 E 8-14 J 8-85 E 9-59 E 9-59 E
5~12 E 8-15 H 8-86 E 9-60 J 9-60 J
5-13 E 8-16 J 8-87 E 9-61 J 9-61 J
5-14 E 8-17 J 8-88 E 9-62 J 9-62 J
5-15 E 8-18 G 8-89 H 9-63 E 9-63 E
5-16 E 8-19 F 8-90 E 9-64 E 9-64 E
5-17 E 8~20 F 8-91 E 9-65 J 9-65 J
5-18 E 8-21 J 8-92 E 9-66 J 9-66 J
5-19 E 8~-22 J 8-93 E 9-67 E 9-67 E
5-20 J 8-23 H 8-94 E 9-68 E 9-68 E
5-21 J 8-24 H 8-95 E 9-69 E 9-69 E
5-21.1 J 8-25 H 8-96 E 9-70 E 9-70 E
5-21,2 J 8-26 H 9-1 E 9-71 J 9-71 J
5-22 J 8-27 H 9-2 E 9-72 E 9-72 E
5-22.1/5-22.2| J 8-28 H 9-3 E 9-73 E 9-73 F
5-23 E 8-29 E 9-4 H 9-74 E 9-74 'E
5-24 F 8-30 H 9-5 E 9-75 J 9-75 J
5-25 F 8-31 E 9-6 H 9-76 J 9-76 J
5-26 F 8-32 E 9-7 E 9-77 J 9-77 J
5-26.1/5-26.2| ¢ 8-33 E 9-8 G 9-78 J 9-78 J
5-27 G 8-34 E 9-9 E 9-79 J 9-79 J
5-28 E 8-35 E 9-10 E 9-80 F 9-80 F
5~29 E 8-36 E 9-11 J 9-81 G 9-81 G
5-30 E 8-37 E 9-12 H 9-82 G 9-82 G
6-1 E 8-38 E 9-13 J 9-82.1/9-82.2) J 9-82.1/9-82.2| J
6-2 H 8-39 G 9-14 J 9-83 E 9-83 E
6-2.1/6-2.2 H 8-40 G 9-15 H 9-84 G 9-84 G
6-3 J 8~41 E 9-16 H 9-85 E 9-85 E
6~4 J 8~42 E 9-17 E 9-86 G 9-86 G
6~5 J 8-43 E 9-18 E 9-87 E 9-87 E
6-6 J 8-44 G 9-19 E 9-88 E 9-88 E
6-7 J 8-45 G 9-20 E 9-89 H 9-89 H
6-8 J 8-46 E 9-21 E 9-90 J 9-90 J
6-9 J 8~47 E 9-22 G 9-91 E 9-91 E
6-10 J 8-48 G 9-22.1/9-22.2| ¢ 9-92 E 9-92 E
6-11 J 8-49 J 9-23 G 9-93 E 9-93 E
6-12 J 8-50 E 9-24 E 9-94 E 9-94 E
6-12.1 J 8-51 J 9-25 E 9-95 E 9-95 E
6-12.2 J 8~52 H 9-26 H 9-96 E 9-96 E
6-12.3/6-12.4| J 8-53 E 9-27 G 9-97 E 9-97 E
6-13 E 8-54 H 9-28 H 9-98 E 9-98 E
6-14 E 8-55 H 9-29 G 9-99 E 9-99 E
6-15 E 8-56 E 9-30 E 9-100 G 9-100 G
6-16 E 8-57 H 9-31 E 9-101 E 9-101 E
6-17 H 8-58 J 9-32 F 9-102 F 9-102 F
6-18 J 8-59 E 9-33 F 9-103 H 9-103 H
6-19 E 8-60 J 9-34 F 9-104 E 9-104 E
6-20 E 8-61 E 9-35 F 9-105 G 9-105 G
6-21 E 8-62 E 9-36 E 9-106 E 9-106 E
6-22 E 8-63 J 9-37 J 9-107 E 9-107 E
6-23 G 8-64 E 9-38 J 9-108 G 9-108 G
6-24 E 8-65 J 9-39 H 9-109 E 9-109 E
7-1 E 8-66 J 9-40 [¢ 9-110 G 9-110 G
7-2 E 8-67 E 9-41 J 9-110.1/ 9-110.1/

7-3 E 8-68 E 9-42 J 9-110.2 G 9-110.2 G
7-4 E 8-69 H 9-43 G 9-111 E 9-111 E
7-5 E 8-70 E 9-44 E 9-112 F 9-112 F
7-6 E 8-71 E 9-45 E 9-113 F 9-113 F
8-1 E 8-72 E 9-46 (e 9-114 F 9-114 F
8-2 E 8-73 F 9-47 E 9-115 J 9-115 J
8-3 E 8-74 J 9-48 H 9-116 J 9-116 J
8-4 E 8-75 E 9-49 E 9-117 H 9-117 H
8-5 E 8-76 E 9-50 E 9-118 E 9-118 E
8-6 F 8-77 E 9-51 G 9-119 E 9-119 E
8-7 E 8-78 E 9--52 G 9-120 J 9-120 J
8-8 E 8-79 E 9-53 [¢] 9-121 J 9-121 J
8-9 E 8-80 E 9-54 G 9-122 E 9-122 E
8-10 E 8-81 E 9-55 E 9-123 J 9-123 J
8-11 H 8-82 E 9-56 G 9-124 E 9-124 E
8-12 H 8-83 E 9-57 J _9-125 E 9-125 E

60459410 H

PAGE REV PAGE Reﬂ PAGE REVJ l PAGE REV PAGE REV
—

B-14 H B-85 J F-15 G
B-15 H B-86 J G-1 J
B-16 H B-87 J G-2 J
B-17 H B-88 J G-3 J
B-18 H B-89 J G-4 J
B~-19 H B-90 J Index-1 J
B-20 H B-91 J Index-2 J
B-21 H B-92 J Index-3 J
B-22 H B-93 J Index-4 J
B-23 H B-94 J Index-5 J
B-24 H B-95 J Index-6 J
B-25 H B-96 J Index~7 J
B-26 J B-97 J Index-8 J
B-27 J B-98 J Index-9 J
B-28 J B-99 J Index-10 J
B-29 J B-100 J Index-11 J
B-30 J B-101 J Index-12 J
B-31 J B-102 J Comment Sheet J
B-32 J B-103 J Inside Back

B-33 J B-104 J Cover J
B-34 J B-105 J Back Cover -
B-35 J B-106 H

B-36 J B-107 H

B-37 J B-108 H

B-38 J B~-109 H

B-39 J B-110 J

B-40 J B-111 J

B-41 J B-112 J

B-42 J Cc-1 E

B-43 J c-2 H

B-44 J Cc-3 H

B-45 J C-4 H

B-46 J c-5 H

B-47 J C-6 H

B-48 J c-7 H

B-49 J c-8 H

B-50 J c-9 J

B-51 J Cc-10 J

B-52 J C-11 J

B-53 J D-1 E

B-54 J D-2 E

B-55 J D-3 E

B-56 J D-4 F

B-57 J D-5 J

B-58 J D-6 E

B-59 J D-7 G

B-60 J D-8 E

B-61 J D-9 E

B-62 J E-1 E

B-63 J E-2 E

B-64 J E-3 E

B-65 J E-4 E

B-66 J E-5 E

B-67 J E-6 E

B-68 J E-7 E

B-69 J E-8 E

B-70 J E-9 E

B-71 J F-1 E

B-72 J F-2 E

B-73 J F-3 E

B-74 J F-4 J

B-75 J F-5 E

B-76 J F-6 E

B~77 J F~7 J

B-78 J F-8 F

B-79 J F-9 F

B-80 J F-10 J

B-81 J F-11 E

B-82 J F-12 E

B-83 J F-13 J

B-84 J F-14 J

60459410 J 5/6

PREFACE

This manual describes the CONTROL DATA® Virtual Storage Operating System (VSOS) for the
cDC® CYBER 200 Series Computer System. This manual is published in two volumes:

e Volume 1 describes system utilities and system interface language (SIL)
subroutines. It also contains a general description of CYBER 200 hardware and
operating system software, file concepts, and task execution. It is written
primarily for the applications programmer.

e Volume 2 describes system messages and job management tables. It also describes
system accounting file formats, common execute line routines, and loader
conventions. It is written primarily for the system programmer.

RELATED PUBLICATIONS
Related iﬁformation can be found in the following publications:
Publication
Control Data Publication Number

VSOS Version 2, Reference Manual, Volume 2 60459420
FORTRAN 200 Version 1 Reference Manual 60480200
CYBER 200 Maintenance Software System Reference Manual 60457200
CYBER 200 Assembler Version 2 Reference Manual 60485010
CYBER 200/Model 205 Computer System Hardware Reference Manual ~ 60456020
CYBER 200/Model 205 Troubleshooting Guide 60430060
VSOS Version 2 Operator”s Guide 60459430
VSOS Version 2 Installation Handbook 60459440
Remote Host Facility Handbook (Use with NOS system) : 60459060
Remote Host Facility Handbook for IBM System (Use with MVS/JES2,
MVS/JES3, and MVS/ASP systems) 60459050
Remote Host Facility Handbook (Use with SCOPE 2 system) 60455610
Remote Host Facility User”s Guide 60460620
VSOS Version 2 Site Manager”s Handbook 60461490
VSOS User”s Guide for FORTRAN 200 Programmers 60455390

60459410 F . 7

Control Data manuals can be ordered from:

Literature and Distribution Services
STP0O5

304 North Dale Street
St. Paul, MN 55103

DISCLAIMER

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or
parameters.

Control Data no longer supports the FORTRAN
66 compiler.

60459410 E

NOTATIONS USED IN THIS MANUAL

UPPERCASE Words or character strings that must be entered as shown.
They must be spelled correctly, including any = or / shown.

UNDERLINED UPPERCASE Words or character strings that can be abbreviated to the
number of underlined characters.

Lowercase words Generic terms that represent the parameters or character
strings supplied by the programmer. When generic terms are
repeated in a format, a number or letter might be appended.

[] Brackets An optional portion of a format. All parameters enclosed
within the brackets can be omitted at the programmer”s
option. The brackets are editorial conventions only; they are
not part of the format.

[I Braces A portion of a format in which only one of the vertically
stacked items can be used. The braces are editorial
conventions only; they are not part of the format.

« « o Ellipses An indicator of repetition. The portion of the format
immediately preceding the ellipses can be repeated at the
programmer”s option.

A An indicator of a blank. 1In a format, this character
indicates that a blank or space should appear.

An indicator that hexadecimal numbers follow. Numbers used in
this manual are decimal unless noted as hexadecimal.

Punctuation characters shown within formats are required unless the text indicates that
another punctuation character can be substituted.

60459410 E 9/10

CONTENTS

N ———

1. INTRODUCTION 1-1 Execute Permission 2-15
Access Permission Sets 2-15
System Configuration 1-1 Concurrent File Access 2-16
CYBER 200 Mainframe 1-2 File 1/0 2-17
CYBER 200 Memory 1-2 Explicit I/0 2-17
Maintenance and Control Unit 1-2 Implicit I/0 2-17
Loosely Coupled Network (LCN) 1-3 Logical File Structures 2-18
Operating System 1-4 Logical Record Formats 2-18
Resident System 1-4 ANSI Fixed Length (F)
Virtual System 1-4 Record Format 2-18
Privileged System Tasks 1-4 Record Mark Delimited (R)
VS0S User Interface 1-5 Record Format 2-19
Remote Host Facility (RHF) 1-5 Undefined Structure (U)
CYBER 200 Comparison 1-5 Record Format 2-19
Virtual Memory Addressing 1-6 Control Word Delimited (W)
Register File 1-6 Record Format 2-20
CYBER Record Manager Control
Word (L) Record Format 2-21
System Block (B) Record Format 2-22
2. FILE CONCEPTS 2-1 Blocking Types 2-23
C Blocking 2-23
File Attributes 2-1 I Blocking 2-23
File Types 2-2 K Blocking 2-24
Controllee Files 2-2 File Organization 2-25
Data Files 2=-2 Sequential Access Organization 2-25
Drop Files 2-2 Direct Access Organization 2-25
Drop File Naming Convention 2-3 Device Characteristics 2-26
Restarting a Task 2-3 Mass Storage Files 2-26
Bound Explicit and Implicit File Space Allocation 2-26
Maps 2-4 Tape Files 2-28.1
Output Files 2-4 Tape Drive Reservation 2-28.1
Print Files 2~5 Volume Assignment 2-29
Print Control Characters 2-5 Volume Switching 2-29
Output File Error Processing 2-7 Tape Labeling 2-29
File Duration 2-8 Tape Data Recording 2-32
Scratch Files 2-8 Tape Data Organization 2-33
Local Files 2-8 Tape Error Processing 2-36.1
Permanent Files 2-8 User Error Processing 2-37
File Usage Controls 2-9 Connected Interactive Terminal
File Security Levels 2-9 Files 2-37
File Patterning 2-9
File Ownership 2-9
File Search Hierarchy 2-12
Private Files 2-12 3. TASK EXECUTION 3-1
Pool Files 2-12
System Pool 2-13 Initiating Controllee Execution 3-1
Public Files 2-13 Virtual Space Mapping 3-2
File Access Permissions 2-14 Controllee Chains 3-3
Read Permission 2-14 ., System Access 3-4
Write Permission 2-14 User Validation 3-4
Append Permission 2-14 Interactive System Access 3-5
Modify Permission 2-15 VSOS Interactive Login 3-5

60459410 J 11

Batch System Access
Interactive Session
Break Character
Interactive Request Lines
Changing the Interactive

3-6 Conditional Statement Processing 4-6
3-7 Control Statement Procedures 4-6
3-7 PROC Statement 4-6
3-7 BEGIN Statement 4-6
Control Statement Execution

Request Special Character 3-7 Sequence 4-7
Terminal Information Requests 3-8 Procedure Nesting 4-8
Case Conversion Request 3-9 Formal Parameter Substitution 4-8
Operator Message Request 3-10 Matching Substitution Values
Task Interrupt Request 3-10 to Formal Parameters 4-9
Session Termination Request 3-10.1 Omitting Substitution Values 4-10
Interactive Execute Line 3-10.1 Suppressing Formal Parameter
Task Data Input 3-12 Substitution 4-11
Dynamic and Static Execution 3-12 Concatenating Substitution
Batch Job 3-14 Values 4-11
Batch Input File Structure 3-14 Suppressing @ or ~ Character
Batch Control Statement 3-14 Removal 4-12
Job Scheduling 3-15 ATTACH - Attach Permanent Files 4-13
Job Processing 3-16 AUDIT - List File Information 4-15
Job Dayfile 3-17 File Specification 4-17
Job Termination 3-17 AUDIT Output 4-18
Job Termination Procedure 3-18 CHARGE -~ Assign Account and Project
Job Abort 3-18 Number 4-21
Abnormal Job Termination 3-18 COMMENT — Send Message to Job Dayfile 4-22
Job Processing Example 3-18 COMPARE ~ Compare File Contents 4-23
Remote Host Facility 3-21 Controllee File Comparison 4-24
Interactive Access 3-21 COPY - Copy a File 4-25
Queue File Transfers 3-22 Copying to or from a Tape File 4-26
CYBER 200 Job Submission 3-22 Copying to a Mass Storage File 4-26
Output File Routing 3-23 Controllee File Copy 4-27
Explicit File Routing 3-23 COPYL - Copy Logical Records 4-28
RHF Permanent File Requests 3-24 DAYFILE - Copy the Job Dayfile 4-30
Permanent File Requests 3-24 DEFINE - Define a Permanent File 4-30.1
Permanent File Audit Request 3-25 Defining a New File 4-33
Direct Access File Transfers 3-25 DIVERT - Change the Destination of
File Archiving 3-27 an Output File 4-34
Task Termination 3-28 DMAP - Provide Information on
User Reprieve 3-28 Location of File Segments 4-34,2
Abnormal Termination Control 3-28 DROP - Remove a Job from a Queue 4-36
ATC Interrupt Subroutine 3-29 DUMPF - Archive Files 4-36,2
Enabling and Disabling ATC 3-30 Specification of Files to be
Resource Allocation 3-31 Archived 4-40.1
Batch Resource Limits 3-31 Archive File Format 4-41
Interactive Resource Limits 3-32 Archiving to a Front-End System 4-42
Accounting 3-33 Archiving to CYBER 200 Mass
Storage 4=42
Using DUMPF to Purge Files 4-43
Archiving to CYBER 200 On-Line
Tapes 4-43
4. CONTROL STATEMENTS 4-1 DUMPF Output 4-43
EDITPUB - Add or Destroy Public
Control Statement Parameter Format 4=4 File 4-46
Interactive Control Statement Variable Rate Index Specification 4-47
Execution EXIT - Set Abnormal Termination Path 4-48
Control Statement Management FILES = List File Information 4-49
Control Statement Variables FILES Output 4-51
Conditional Control Statements 1 Interactive Utility Execution 4-52
IF Control Statement 1 GIVE - Change File Owner 4-53
ELSE Control Statement 2 LABEL - Label Tape File 4-55
ENDIF Control Statement 2 Multifile Sets 4-58
12 60459410 J

Writing a Multifile Set
Reading a Multifile Set
Rewriting Files in a
Multifile Set
LIMITS - List User Validations
LISTAC - List Access Permission Sets
LISTAC Output
LOAD - Generate Controllee File
Files Used to Generate a
Controllee
Object Code Files
Listing File
Controllee File
Satisfying External References
Dynamic Linking Using the System
Shared Library
Dynamic Linker
Dynamic Execution

Dynamically Linked Controllees

Page Grouping
Grouping Controllee File
Blocks
Grouping Unmapped Blocks
Grouping Parameter Mapping
Space Initialization
Target Page Size
Control Statement Format
Interactive Load Execution
LOADPF - Reload Files
RHF Reloading
Reloading from CYBER 200 Mass
Storage
Reloading from CYBER 200 On-Line
Tapes
User Reloading Capabilities
Specification of the Files to
Be Reloaded
LOADPF Output
MFLINK - Permanent File Transfer
Character Code Conversion
Logical Structure Conversion
MFQUEUE - Explicit File Routing
NORERUN - Set Norerun Status
OLE - Object Library Editor
PACCESS - Authorize Pool Access
PASSWORD - Change User Password
PATTACH - Attach a Pool
PCREATE - Create a Pool

PDELETE - Remove User Access to a Pool

PDESTROY - Destroy a Pool

PDETACH -~ Detach an Attached Pool

PERMIT - Change Access Permission Set

PFILES - List Pool Information

Proceed - Set Abnormal Termination
Path

PURGE — Destroy Permanent or Pool
Files

Q - List Job Status

60459410 J

4-59
4-60.1
4-61
4-63
4-65

4-65
4-65
4-66
4-66
4-69

4-70
4-70
4-71
4-71
4-71

4-72
4-72
4-73
4-73
4=74
4=74.1
4-78.1
4-80
4~84

4-84

4-85
4-86
4-88
4-90
4-90
4-91
4-93
4-94
4-97
4-98
4-99
4-100
4-101
4-102
4-102
4-103
4-105

4-106

4-106.1
4-107

Input Queue Status
Executing Task Status
Gutput File Status
REQUEST - Create Local File
File Space Allocation
Tape File Request
Tape Labels
Data Format Specification
Processing Options
Operator Message
RERUN - Set Rerun Status
RESOURCE - Set Job Resource Limits
Tape Drive Reservation
RETURN - Evict Local Files or Detach
Permanent Files
Returning Tape Files
REWIND - Rewind a Tape File
SET - Change Job Characteristics
SKIP - Reposition a Tape File
SLGEN - Construct System Shared
Library
SUBMIT - Submit a File to a Queue
SUMMARY - Provide Resource Usage
Information
SUMMARY Output
SWITCH — Change File Attributes
TASKATT - Alter a Task”s Attributes
TV - Set Threshold Value
USER - Provide User Validation
Information

5. UPDATE

Examples
General Processing
Update Mode and Files
Input File
New Program Library
Source File
0ld Program Library
Compile File
List File
Pullmod File
Creation of Program Library
Card Identification
Correction Run
Deck List and Directory Order
Purge and Yank Directives
Overlapping Corrections
Update Directives
ADDFILE Directive
BEFORE Directive
CALL Directive
COMDECK Directive
COMPILE Directive
DECK Directive
DEFINE Directive

4-108.1
4=109
4-110
4-112.1
4-117
4-118
4-118
4-119
4-119
4-119
4-120
4-121
4-123

4-124
4-125
4-126
4-127
4-128.1

4-129
4-132

4-134
4-134
4-136
4-139
4~140

4-142

wn
1
—

)
— = O WWYWOWWEOWO NN

[
—

|
o

MWMWMUUML{!WMUU\UUWW

1
b
S~

5-15
5-16
5-16
5-17
5-18
5-19
5-20

13

DELETE Directive
ENDIF Directive
IDENT Directive
IF Directive
INSERT Directive
MOVE Directive
PULLMOD Directive
PURDECK Directive
PURGE Directive
READ Directive
WIDTH Directive
YANK Directive
YANKDECK Directive
/ Comment Directive
Update Control Statement

6. DEBUGGING

DEBUG
DEBUG Control Statement
DEBUG Directives
Dump or Display Directives
Register Directives
Alter Memory Directives
Restore Memory Directive
Program Control Directives
LOOK
LOOK Control Statement
LOOK Directives
SEARCH Directive
HSEARCH Directive
Disposition of Directive
Output
Display and Dump
Directives
Directives for Entering
Values
Declaration of Directive
Address Type
DUMP

7. CHECKPOINT/RESTART

Checkpointing a Task
Task Processing After the
CHKPNT Call
Restarting a Task
Restarting a Task That Uses
Tape Files

8. SYSTEM INTERFACE LANGUAGE
"(NON-I/0 CALLS)

Overview

SIL Error Processing
SIL Call Format

No Operation Keywords

14

5-20
5-21
5-21
5-22
5-21.1
5-21.1
5-22
5-22.1
5-23
5-24
5-24
5-25
5=25
5-26
5-26.1

[=)]
1
—

SIL Non-1/0 Calls

Q5ADVISE - Advise System of
Virtual Space Requirements

Q5CPUTIM - Get CPU Time

Q5DCDDST - Decode Disk Status
Table

Q5DCDMSC - Decode Miscellaneous
Table

Q5DCDPFI - Decode Pack File Index

Q5DCDPLB - Decode Pack Label

Q5DESBIF - Destroy Batch Input
File

Q5DISAMI - Disable Message
Interrupts

Q5DISATI - Disable Abnormal
Termination Control

Q5DMPACT - Dump Cumulative
Accounting Buffer

Q5ENAMI - Enable Message
Interrupts

Q5ENATI - Enable Abnormal
Termination Control

Q5GETACT - Get Resource Usage
Statistics

Q5GETCTS - Get Controllee
Termination Status

Q5GETIIP — Get Invisible Package

Q5GETIRF - Get Register File

Q5GETLP - Get Large Page Limits

Q5GETMCE - Get Message from
Controllee

Q5GETMCR - Get Message from
Controller

Q5GETMOP ~ Get Message from
Operator

Q5GETMPG - Get Minus Page

Q5GETPFI - Get Pack Label and
File Index

Q5GETTL ~ Get Time Limit

Q5GETTIN - Get Task Attributes

Q5GETUID - Get User Number

Q5INIT - Initialize Controllee

Q5INITCH - Initialize Controllee
Chain

Q5LFIHIR - List File Index Entry
By Hierarchical Search

Q5LFIPOL - List Pool File Indices

Q5LFIPRI - List Private File
Indices

QSLFIPUB -~ List Public File
Indices

Q5LSTBUT — List Bank Update Table

Q5LSTCH - List Controllee Chain

Q5LSTSTB — List Statistics Buffer

Q5LSTTCB - List Timecard Buffer

QS5SMEMORY - Allocate Static Stack

Q5RECALL - Suspend Task Execution

QSREPREV — Enable or Disable User
Reprieve

8-37
8-38

8-40
8-41
8-42
8-~43

8~44
8-45

8~47
8-48

8-49
8-50
8-51
8-53
8-55

8-56

8-58
8-60

8-63

8-66
8-68
8-69
8-71
8-72
8-73
8-74

8-75

60459410 J

9.

SIL

SIL

Q5RFI - Return from Interrupt
Subroutine

Q5RUNBIF - Rerun Batch Input File

Q5SETLP - Change Current Large
Page Limit

Q5SNDMCE - Send Message to
Controllee

Q5SNDMCR - Send Message to
Controller

Q5SNDMDF - Send Message to
Dayfile

Q5SNDMJC - Send Message to Job
Controller

Q5SNDMJS - Send Message to Job
Session

Q5SNDMOP - Send Message to Operator

Q5SNDSTR - Start Controllee
Execution

Q5TERM - Terminate Task

Q5TERMCE - Disconnect Controllee

Q5TIME - Get System Time

Q5VRACC - Change Accounting Rate

SYSTEM INTERFACE LANGUAGE
(1/0 CALLS)

1/0 Overview
Preparing a File for I/0
FIT Processing
Opening a File
Explicit 1/0
Explicit I/0 by Logical
Partition
Explicit I/0 By Physical Block
Appending Data
Implicit I/0
Example of Implicit I/0
1/0 Calls
Q5ATTACH - Attach Permanent File
Q5CHANGE - Change File Attributes
Q5CHECK - Check I/0 Request Status
Tape 1/0 Requests
Q5CHECKB - Check Block I/0
Request Status
Q5CLIOER - Clear Tape I/0 Error
Q5CLOSE - Close File
Tape Label Processing
Q5DEFINE - Define Permanent File
Q5ENDPAR — Write Partition
Delimiter
Tape Partition Delimiters
Q5GENFIT - Generate FIT
Tape File FITs
Accessing the Tapes Table Entry
Q5GETB — Get a Buffer Record
Q5GETFIL - Open or Create and
Open a File
Mass Storage Files

60459410 J

9-19
9-21
9-22
9-23
9-25

9-29
9-30
9-31

9-36.

9-37
9-39

Opening a File for
Implicit I/0
Files Connected to Terminals
Tape Files
Q5GETFIT - Get FIT Field Values
Q5GETN - Read Partition
Tape Files
Q5GETP - Read Partial Partition
Tape Files
Q5GIVE - Give File Ownership
Q5LABEL - Request File from
Multifile Set
Multifile Sets
Q5MAPIN - Map In Virtual Space
Q5MAPOUT - Map Out Virtual Space
Q50PEN — Open File
Access Modes
Shared Access
1/0 Buffers
Implicit 1/0
Files Connected to Terminals
Tape Files
Q5PATACH - Attach Pool
Q5PCREAT - Create Pool
Q5PDESTR - Destroy Pool
Q5PDTACH - Detach Pool
Q5PERMIT - Change Access
Permission Set
Tape Access
Q5PGRACC - Grant Access to Pool
Q5POOLS - List Pools
Q5PREACC - Remove Access to Pool
Q5PURGE - Purge File
Q5PUSERL - List Users With
Access to Pool
Q5PUTB - Put a Buffer Record
Q5PUIN - Write Partition
Tape Files
Q5PUTP - Write Partial Partition
Tape Files
Q5READ - -Read Block
Reading Tape Data
Reading PRUs
Reading LRUs
LRU Description Array
Writing Additional Tape
Volume Labels
Q5REDUCE - Reduce File Space
Q5REELSW - Write Additional Tape
Volume Labels
Q5RETFIT - Return FIT
Q5RETURN - Return File
Tape Files
Q5REWIND - Rewind File
Tape Files
Q5ROUTE - Route File
Q5RQUEST - Request Local File
Files Connected to Terminals
Tape Files

Q5S8ETFIT - Set FIT Field Values 9~-122 Return Buffer 10-19

Q5SKIP - Skip Partition 9-126 Special Characters 10-26
Repositioning a Sequential
Access File 9-127
Tape Files 9-129
Q5WRITE - Write Block 9-130 11. VSOS SCREEN SUPPORT ROUTINES 11-1
I1/0 Buffers Used 9-130
Wait Processing 9-131 QI9SCRrR 11-1
Appending Blocks 9-132 Definitions 11-2
Tape Files 9-132 Synopsis 11-3
Writing Additional Tape Calling Conventions 11-4
Volume Labels 9-132 Memory Use 11-7
Descriptions of Individual
Routines 11-7
Limits 11-15
10. COMMON EXECUTE LINE SUPPORTING QI9SPRINT 11-16
ROUTINES 10-1 Usage 11-16
Examples 11-18
Conventions 10-1 Alternate Interfaces 11-19
Supporting Routines 10-5 Miscellaneous Definitions and
Q7ENVIRN 10-5 Guidelines 11-19
Q7MODE 10-6 Format of Display Tables 11-19
Q7PROMPT : 10-7 Guidelines for Implementing Table
Q7KEYWRD 10-8 Displays 11-20
lhs Table 10-12 Guidelines for Implementing Display
rhs Table 10-15 Tasks 11-20
APPENDIXES
A. CHARACTER SET A-1 CYBER 170 Arithmetic Conversion
Routines E-5
Conversion Processing E-5
B. MESSAGES B-1 Call Format) E-6
CYBER 170 to CYBER 200 Integer
Conversion E-6
C. GLOSSARY) c-1 CYBER 200 to CYBER 170 Integer
Conversion E-7
CYBER 170 to CYBER 200 Floating
D. SIL FILE INFORMATION TABLE D-1 Point Conversion E-7
CYBER 200 to CYBER 170 Floating
Point Conversion E-7
E. FORTRAN DATA CONVERSION ROUTINES E-1 CYBER 170 to CYBER 200 Numeric
Data Transfer Example E-8
IBM Arithmetic Conversion Routines E-1 CYBER 170 to CYBER 200
IBM to CYBER 200 64-Bit Floating Transfer - E-8
Point Conversion E-1 CYBER 200 to CYBER 170
IBM to CYBER 200 32-Bit Floating Transfer E-9
Point Conversion E-2
CYBER 200 to IBM 64-Bit Floating
Point Conversion E-3 F. TAPE LABELS AND FORMATS F-1
CYBER 200 to IBM 32-Bit Floating

Point Conversion E-3 G. DISPLAY PROGRAM EXAMPLE G-1

16 60459410 J

www(.A)MIT)NNNNH
PN OV WN -

UV P WLWN =000 W,
*
W N ==

4-11
4-12

4-13.1

4-14
4-14.1
4-15
4-16
4-17
4-18

4-19
4-20
4-21
4-22
4-23

CYBER 200 Configuration Example
File Ownership
W Control Word Format
L Control Word Format
I Block Control Word Format
1 Format PRU Terminator
SI Format PRU Terminator
Task Mapping
LOGIN Command Format
Interactive Execute Line Format
Example Batch Input File as
Read by the Batch Processor
USER Control Statement Format
MFGIVE Control Statement Format
MFTAKE Control Statement Format
Interrupt Subroutine Header
IF Control Statement Format
ELSE Control Statement Format
ENDIF Control Statement Format
PROC Control Statement Format
BEGIN Control Statement Format
ATTACH Control Statement Format
AUDIT Control Statement Format
AUDIT Output Example
AUDIT OQutput Example (if either
the ACCOUNT or the MPN
parameters are specified)
CHARGE Control Statement Format
COMMENT and Control Statement
Format
COMPARE Control Statement
Format
COPY Control Statement Format
COPYL Control Statement Format
DAYFILE Control Statement
Format
DEFINE Control Statement
Format
DIVERT Control Statement
Format
DMAP Control Statement Format
DROP Control Statement Format
DUMPF Control Statement Format
Directory/Dumped File Format
DUMPF Output Example
EDITPUB Control Statement
Format
EXIT Control Statement Format
FILES Control Statement Format

" FILES Sample Output

GIVE Control Statement Format
LABEL Control Statement Format

60459410 J

INDEX

4-23.1 LIMITS Control Statement

FIGURES

1-1

2-11

2-20 4=24

2-21

2-24 4-25

2-34 4-26

2-35

3-2 4-27

3-6

3-11 4-28
4-29

3-19

3-22.1 4-30

3-25

3-25 4-31

3-29 4-32

4-6.1

4-6.2 4-33

4-6.2

4-6.3 4-34

4-7

4-13 4-35

4~15 4-36

4-20 4-37
4-38

4-20

4-22 4-39

4-22 4-40

4-23 4-41

4=25

4-28 4-42

4-30.1 4-43

4-31 4-44

4-34 4=45

4-34.2

4-36.1 4-46

4-37 4-46.1

4-41

4-45 4-47
4-48

4=46 4-49

4-48

4-50 4-50

4-51 4-51

4-53

4-55 4-52

Format

LISTAC Control Statement
Format

Files Used by the LOAD Utility

Controllee File Format (Code
and Data Bases Separate)

Controllee File Format (Data
Grouped with Code)

LOAD Control Statement Format

Example of Interactive LOAD
Execution

LOADPF Control Statement
Format

LOADPF Output Example

MFLINK Control Statement
Format

MFQUEUE Control Statement
Format

NORERUN Control Statement
Format

NORERUN/RERUN Example

OLE Control Statement Format

PACCESS Control Statement
Format

PASSWORD Control Statement
Format

PATTACH Control Statement
Format

PCREATE Control Statement
Format

PDELETE Control Statement
Format

PDESTROY Control Statement
Format

PDETACH Control Statement
Format

PERMIT Control Statement
Format

PFILES Control Statement
Format

PFILES Sample Output

PROCEED Control Statement
Format

PURGE Control Statement Format

Q Control Statement Format

REQUEST Control Statement
Format

RERUN Control Statement Format

RESOURCE Control Statement
Format

RETURN Control Statement
Format

4-98
4-99

4-100
4-101
4-102
4-102
4-104

4-105
4-105

4-106
4-106.1
4-108

4-112
4-120

4-121

4-124

17

R L R I It T e e U
WCONOUPHFWNFEWNRUSWN -

VOOV ROPOOONIIAIOO O

-
o

REWIND Control Statement 8-10 Q5DMPACT Call Format 8-34

Format 4-126 8-11 Q5ENAMI Call Format 8-35
SET Control Statement Format 4-127 8-12 Q5ENATI Call Format 8-37
SKIP Control Statement Format 4-128,1 8-13 Q5GETACT Call Format 8-38
SLGEN Control Statement Format 4-129 8-14 Q5GETCTS Call Format 8-40
SLGEN Directive Formats 4-130 8-15 Q5GETIIP Call Format 8-41
SUBMIT Control Statement 8-16 Q5GETIRF Call Format 8-42

Format : 4-132 8-17 Q5GETLP Call Format 8-43
SUMMARY Control Statement 8-18 -~ Q5GETMCE Call Format 8-44

Format 4-134 8-19 Q5GETMCR Call Format 8-45
SWITCH Control Statement 8-20 Q5GETMOP Call Format 8-47

Format 4-137 8-21 Q5GETMPG Call Format 8-48
TASKATT Control Statement 8-22 Q5GETPFI Call Format 8-49

Format 4-139 8~23 Q5GETTL Call Format 8-50
TV Control Statement Format 4-140 8-24 Q5GETIN Call Format 8-51
USER Control Statement Format 4-142 8-25 Q5GETUID Call Format 8-53
Typical UPDATE Creation Run 5-2 8-26 Q5INIT Call Format 8-55
Typical UPDATE Correction Run 5-3 8-27 Q5INITCH Call Format 8-56
Card Identifier Expansion 5-11 8-28 Q5LFIHIR Call Format 8-58
ADDFILE Directive Format 5-15 8-29 Q5LFIPOL Call Format 8-60
BEFORE Directive Format 5-16 8-30 QSLFIPRI Call Format 8-63
CALL Directive Format 5-16 8-31 Q5LFIPUB Call Format 8-66
COMDECK Directive Format 5-17 8-32 Q5LSTBUT Call Format 8-68
COMPILE Directive Format 5-18 8-33 Q5LSTCH Call Format 8-69
DECK Directive Format 5-19 8-34 Q5LSTSTB Call Format 8-71
DEFINE Directive Format 5-20 8-35 Q5LSTTCB Call Format 8-72
DELETE Directive Format 5-20 8-36 Q5MEMORY Call Format 8-73
ENDIF Directive Format 5-21 8-37 Q5RECALL Call Format 8-74
IDENT Directive Format 5-21 8-38 Q5REPREV Call Format 8-75
IF Directive Format 5-22 8-39 Q5RFI Call Format 8-77
INSERT Directive Format 5-21.1 8-40 Q5RUNBIF Call Format 8-78
MOVE Directive Format 5-21.1 8-41 Q5SETLP Call Format 8-79
PULLMOD Directive Format 5~22 8-42 Q5SNDMCE Call Format 8-80
PURDECK Directive Format 5-22.1 8-43 Q5SNDMCR Call Format 8-82
PURGE Directive Format 5-23 8-44 QS5SNDMDF Call Format 8-85
READ Directive Format 5-24 8-45 Q5SNDMJC Call Format 8-87
WIDTH Directive Format 5-24 8-46 Q5SNDMJS Call Format 8-89
YANK Directive Format 5-25 8-47 Q5SNDMOP Call Format 8-90
YANKDECK Directive Format 5-25 8-48 Q5SNDSTR Call Format 8-92
/ Comment Directive Format 5-26 8-49 Q5TERM Call Format 8-93
UPDATE Control Statement 8-50 Q5TERMCE Call Format 8-94

Format 5-26.1 8-51 Q5TIME Call Format 8-95
DEBUG Control Statement Format 6-2.1 8-52 Q5VRACC Call Format 8-96
DEBUG Directives 6-3 9-1 Q5ATTACH Call Format 9-10
LOOK Control Statement Format 6-13 9-2 Q5CHANGE Call Format 9-12
LOOK Directives 6-15 9-3 Q5CHECK Call Format 9-16
DUMP Control Statement Format 6-24 9-4 LRU Description Format 9-18
CHKPNT Subroutine Format 7-1 9-5 Q5CHECKB Call Format 9-19
CHKPNT Error Codes 7-3 9-6 Q5CLIOER Call Format 9-21
Return Word Format 7-4 9-7 Q5CLOSE Call Format 9-22.1
Q5ADVISE Call Format 8-8 9-8 Q5DEFINE Call Format 9-25
Q5CPUTIM Call Format 8-10 9-9 Q5ENDPAR Call Format 9-29
Q5DCDDST Call Format 8~-11 9-10 Q5GENFIT Call Format 9-31
Q5DCDMSC Call Format 8-13 9-11 Tapes Table Entry Format 9-37
Q5DCDPFI Call Format 8-18 9-12 Q5GETB Call Format 9-39
Q5DCDPLB Call Format 8-29 9-13 Q5GETFIL Call Format 9-40
Q5DESBIF Call Format 8-31 9-14 Q5GETFIT Call Format 9-50
Q5DISAMI Call Format 8-32 9~-15 Q5GETN Call Format 9-56
Q5DISATI Call Format 8-33 9-16 Q5GETP Call Format 9-57

60459410 J

Q5GIVE Call Format

Q5LABEL Call Format

Q5MAPIN Call Format

Q5MAPOUT Call Format

Q50PEN Call Format

Q5PATACH Call Format
Q5PCREAT Call Format
Q5PDESTR Call Format
Q5PDTACH Call Format
Q5PERMIT Call Format
Q5PGRACC Call Format

Pool List Entry Format
Q5POOLS Call Format

Q5PREACC Call Format

Q5PURGE Call Format

Q5PUSERL Call Format

Q5PUTB Call Format

Q5PUTN Call Format

Q5PUTP Call Format

Q5READ Call Format

Q5REDUCE Call Format
Q5REELSW Call Format
Q5RETFIT Call Format
Q5RETURN Call Format
Q5REWIND Call Format

Q5ROUTE Call Format

Q5RQUEST Call Format
Q5SETFIT Call Format

Q5SKIP Call Format

Q5WRITE Call Format
Key-Dependent Parameter Format
Q7ENVIRN Call Statement Format
Q7MODE Call Statement Format
Q7PROMPT Call Statement Format

lhs Table Entry Format

rhs Table Format

rhs Table Entry Format (First
Word)

rhs Table Entry Format, Type 2

rhs Table Entry Format, Type 3

rhs Table Entry Format,
Type 4/6

Return Buffer Format

Return Buffer Entry Format
(First Word)

Return Buffer Entry Format,
Types 1 and 2

Return Buffer Entry Format,
Type 3

Return Buffer Entry Format,
Type 4

Return Buffer Entry Format,
Type 5 .

Return Buffer Entry Format,
Type 6

Return Buffer Entry Format,
Type 7 with Zeroed Flags

Return Buffer Entry Format,
Type 7 with Set Flags

Return Buffer Entry Format,
Type 8 with One Set Flag

Return Buffer Entry Format,
Type 8 with Two Set Flags

Symbols Known
Q95SCR Maxima
FIT Format
ANSI Standard
Groupings

LOOKUP
and Minima

Tape Label

Q7KEYWRD Call Statement Format

lhs Table Pointer
Configuration

lhs Table Format

lhs Table Header Format

Concurrent File Access Modes

Blocking Type, Tape Format,
and Record Type Combinations

Program States

Logical Structure Conversion

Control Statements

Interaction of USER and POOL
Parameters for AUDIT, DUMPF,
and LOADPF

GIVE Default Access Permission
Sets

Access Permission Sets Listed

Results of Listing and
Controllee File Searches

60459410 J

9-60 10-9

9-63 10-10

9-70 10-11

9-72

9-75 10-12

9-85 10-13

9-86 10-14

9-87

9-88 10-15

9-89 10-16

9-91

9-92 10-17

9-92

9-93 10-18

9-94

9-96 10-19

9-97

9-98 10-20

9-100

9-102 10-21

9-106

9-107 10-22

9-109

9-110 10-23

9-111

9-112 10-24

9-116

9-122 10-25

9-126

9-130 11-1

10-3 11-2

10-5 D-1

10-6 F-1

10-7

10-10 F-2
F-3

10-11

10-12 F-4

10-13 F-5

TABLES

2-16 4-6

2-33 4-7

3-8 4-8

3-26 4-9

4-1 4-10
4-11
5-1

4-17 '
5-2

4=54 5-3

4-61 8-1
9-1

4-66 9-2

Unlabeled Tape Files

Summary of Tape Blocks Per
Group

Single Volume Tapes

Multivolume Tapes

Interaction of USER and POOL
Parameters for LOADPF

Recovery Error Codes

Logical Structure Conversion

Input Queue Status Identifiers

Task Status Identifiers

Output File Status Identifiers

Summary of UPDATE Call
Parameters

Summary of UPDATE Directives

File Contents and Update Mode

SIL Non-I/0 Calls

SIL 1/0 Calls

Calling Parameter Value Ranges

10-14
10-15
10-16
10-17
10-17

10-18
10-20

10-20
10-21
10-21
10-22
10-23
10-23
10-24
10-24
10-25
10-26
11-5

11-15
D-3

F-11
F-13
F-14

19

9-3 Blocking Type, Tape Format, and A-2 Hexadecimal-Octal Conversion A-3

Record Type Combinations 9-36 A-3 Hexadecimal-Decimal Conversion A-4
9-4 Q5GIVE Default Access B-1 Diagnostic Messages B-2
Permission Sets 9-62 B~2 System Utility Error Messages B-26
10-1 Execute Line Special B-3 System Error Codes B-104
Characters 10-27 B~4 Tape Error Codes B-106
11-1 Symbols Known by LOOKUP 11-5 D-1 File Information Table D-2
11-2 11-14 F-1 Required ANSI Label Formats F-5
A-1 American National Standard Code F-2 Optional Label Formats F-8
for Information Interchange F-3 Tape Group Separators F-10

(ASCI1) With Punched Card
Codes and EBCDIC Translation A-2

20 60459410 J

INTRODUCTION 1

The virtual storage operating system (VSOS) controls a CYBER 200 Computer System. This
chapter gives a general description of CYBER 200 hardware and an overview of VSOS.

SYSTEM CONFIGURATION

A CYBER 200 system configuration consists of the CYBER 200 mainframe and peripheral system
components., Peripheral system components include a maintenance control unit (MCU), on-line
mass storage, on—-line tapes, and one or more front—-end computer systems.

The system configuration must also include hardware for communication between the CYBER 200
mainframe and the peripheral system components. Communication within a CYBER 200 system is
performed by a loosely coupled network (LCN).

Figure 1-1 shows one possible CYBER 200 system configuration.

MEMORY
EMORY|MEMORY INTERFACE [MEMORY|MEMORY|

CYBER 205 CPU

I/O CHANNELS

& & MULTIPURPOSE TRUNK
DEDICATED DiSK TRUNK
DEDICATED TAPE TRUNK
FRONT-END
COMMUNICATIONS
_-— TRUNK
DAD TAD
NAD NAD
7639 7021
CONTROLLER CONTROLLER

!

819
DISK UNITS

B —— ——
679 TAPE
UNITS

00554A

Figure 1-1. CYBER 200 Configuration Example

60459410 E i-1

The components of a CYBER 200 system are as follows:
e . CYBER 200 mainframe
e CYBER 200 memory
e Maintenance and control unit (MCU)

e Loosely coupled network (LCN)

CYBER 200 MAINFRAME

A CYBER 200 system configuration is designed for effective use of the CYBER 200 mainframe.
Each CYBER 200 mainframe contains a vector processor, a scalar processor, I/0 channels, and
central memory. The CYBER 200 Model 205 can have up to 16 million words of central memory
and up to 16 I/0 channels. ’

The vector processor performs vector instructions (instructions that use streams of operands
to produce streams of results). The scalar processor performs scalar instructions (instruc-
tions that produce one result) and directs vector processing and central memory data trans—
fers, The I/0 channels control data communication between the scalar processor and the LCN.

CYBER 200 MEMORY

The CYBER 200 is a virtual memory machine. The program space is limited only by the avail-~
able disk space.

Program space (or virtual space) is the range of virtual addresses used by the execution of

a program (a task). When a task is executed, its virtual space is mapped to physical space

(central memory and disk space). During execution, the task is assigned central memory only
for the code and data it is currently using. The rest of the task code and data remains on

disk. When the task requires additional code or data that is currently not in memory, VSOS

automatically copies it from disk into central memory.

The process of copying code and data in and out of central memory is called paging or
implicit I/0. The units transferred in and out are called pages. VSOS uses two page sizes,
a small page and a large page. The small page size is selected during VSOS autoload. It
can be one, four, or sixteen 512-word blocks. The large page size is always 128 512-word
blocks (65536 words).

Paging requires high-speed data communication between a CYBER 200 I/0 channel and a 7639

disk controller connected to 819 disk units. Disk communication for the CYBER 200 Model 205
is performed by the LCN.

MAINTENANCE AND CONTROL UNIT

Operation control and diagnostic functions for the CYBER 200 mainframe are performed at the
MCU. The CYBER 18 MCU is described in the VSOS Version 2 Operator”s Guide.

1-2 60459410 E

LOOSELY COUPLED NETWORK (LCN)

The LCN is a communications network consisting of network access devices (NADs) connected by

trunk lines. Each NAD can connect to as many as four trunk lines; each trunk line can

connect to as many as 24 NADs. A NAD can communicate with another NAD if both are connected

to the same trunk line.

The function of a NAD within the LCN depends on the system component to which it is
connected. A DCD NAD connected to a CYBER 200 disk I/0 channel communicates with a NAD
connected to a 7639 disk controller. A NAD connected to a CYBER 200 tape I/O channel
communicates with a NAD connected to an Advanced Tape System (ATS) controller. A NAD
connected to a CYBER 200 Remote Host Facility (RHF) I/0 channel communicates with a NAD

connected to a front-end computer system. The NAD connected to the MCU may communicate with

all NADs in the LCN.

60459410 G

OPERATING SYSTEM

The CYBER 200 operating system has the following three components:
L) Resident system
e Virtual system

e Privileged system tasks

RESIDENT SYSTEM

The resident system runs in monitor mode; it is always resident in main memory. It
references memory by physical addresses, rather than virtual addresses. When the CPU is in
monitor mode, -interrupts are inhibited, and some additional instructions are enabled.

The resident central operating system has the following four primary parts:
e KERNEL - responsible for processor management and message handling
[PAGER - responsible for memory management and page swapping
e XIOCALL - responsible for explicit I/0
e NPSCALL - responsible for tape I1/0

All access interrupts (page faults), as well as certain messages dealing with memory alloca-
tion, are passed to PAGER by KERNEL. PAGER dynamically allocates both large and small pages
and performs all required implicit input/output necessary to free memory pages and obtain
the pages causing access interrupts.

PAGER determines dynamically which pages of a user”s virtual address space have the most
activity. These pages are the working set of pages for the task at that time.

VIRTUAL SYSTEM

The virtual system is a task that runs in job mode and references memory by virtual

address. It communicates with the resident system via system messages and can modify system
tables. The virtual system performs resource allocation, file management, and message
processing functions.

PRIVILEGED SYSTEM TASKS

Privileged system tasks executed for specilal user numbers. These special user numbers can
issue privileged and nonprivileged system calls and have additional privileges. Unlike
virtual system tasks, privileged system tasks with the exception of the Input/Queue Manager
(IQM) and the Interactive Transfer Facility Servicer (ITFS) cannot modify system tables
directly.

Privileged system tasks perform some of the work of the virtual system. This results in a
reduction of virtual system overhead and frees the virtual system to process other func-
tions. Work such as operator communication and the handling of job input and output is
currently done by privileged system tasks.

1-4 60459410 G

VSOS USER INTERFACE

The VS0S user interface includes the communications software that allows access to a CYBER
200 system, system utilities, and the system interface language (SIL).

VSO0S communications software is the CYBER 200 Remote Host Facility (CYBER 200 RHF).

A system utility is a system—supplied program for performing a common user function.
Utility execution is initiated by execution of its control statement within a job. Usually,
a utility is directed by control statement parameters and/or utility directives. The VSO0S
utilities are described in chapters 4, 5, and 6 of this manual.

SIL is a set of subroutines that user programs can call to perform system functions.
Chapter 8 describes SIL procedures that perform non-I/0 functions; chapter 9 describes SIL
procedures that perform I/0 functions.

REMOTE HOST FACILITY (RHF)

The RHF is the software that communicates with the LCN. Fach computer system attached to
the LCN executes its own RHF software.

The RHF software that executes on a CYBER 200 system is called CYBER 200 RHF. CYBER 200 RHF
consists of application programs and a command driver routine. Each application program
(with the exception of MFLINK) executes as privileged system task. An application program
exists for each RHF function, including sending queue files, receiving queue files, sending
permanent files, receiving permanent files, and receiving interactive requests.

The CYBER 200 RHF user interface is described in chapter 3 of this manual. The CYBER 200
RHF operator interface is described in the VSOS 2 Operator’s Guide.

CYBER 200 COMPARISON

Significant differences exist between the hardware and software of a CYBER 200 system and
that of a CYBER 170 front—end system. Some of the differences that affect application
programs are as follows:

e CYBER 200 memory words are 64 bits.

° CYBER 200 uses a hexadecimal, rather than an octal, number system. The hexadecimal
number sequence is: O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

e CYBER 200 character data is a subset of 8-bit ASCII, not 6-bit display code.
Appendix A contains character code tables.

. The CYBER 200 is a virtual memory machine. CYBER 200 programs do not require
overlays or segmentation. An efficient program uses its data in such a way as to
minimize paging for data access. It also uses the appropriate page size for its
data and program (large or small pages).

60459410 G 1-5

VIRTUAL MEMORY ADDRESSING

The execution of a controllee is called a task. Each task has its own virtual space--the
range of virtual addresses that it uses. The CYBER 200 system translates virtual addresses
to physical addresses without affecting the task.

The system page table associates each physical page in memory with a task and a virtual
address range in that task”s virtual space. The page table entry also indicates whether the
page can be written or can only be read.

A successful association between a virtual address and an entry in the page table causes
that entry to be moved to the head of the table; all other entries are moved down by one
place.

The first 16 entries in the page table are kept in high-speed registers; the registers are
examined in parallel with a simultaneous associative compare. An unsuccessful compare
results in a sequential search through the remainder of the table held in main memory.
Table entries for infrequently used pages automatically float to the end of the table.

If an address has no entry in the page table, the task requesting the address is
interrupted. Normally, the system provides the space addressed by requesting the page moved
to central memory from the disk. The program continues processing from the point of
interruption.

REGISTER FILE

The CPU contains a file of 256 64-bit registers used for instruction and operand addressing,
indexing, and field length counts, and as a source or destination for register—type
instructions. The register file is accessible to assembly language programs and to FORTRAN
language programs that use special calls.

By convention, its contents are divided into several areas that can be used to pass
parameters to another routine, access data for programs, trace execution, and hold
constants, The contents of the register file are dumped to an output file as part of
abnormal job termination; a similar dump can be obtained during program execution through
the debugging facilities available in the system.

Register file conventions are described in appendix D of volume 2 of this manual.

1-6 60459410 F

FILE CONCEPTS 2

A file is a collection of data accessible to you and to the system by name, File names are
from one to eight characters long. User~-created file names must begin with a letter and be
composed of letters and digits; however, they must not begin with the characters Q5 through
Q9. System-created file names can begin with any character.

VS0S is a file-based operating system. Knowledge of file concepts is important for the
understanding of system function and facilities. Not all general concepts apply to all of
the device types supported by the system. This chapter covers file concepts in general and
then relates each to mass storage, magnetic tape, and interactive terminal files.

FILE ATTRIBUTES

VS0S identifies attributes of each file when it is created. These attributes may be
explicitly selected by you (as parameters on the REQUEST statement, for example) or by the
system (default values). Attributes are maintained by the operating system for the life of
the file. They can be permanently changed (via a SWITCH or TASKAIT statement) if the owner
chooses to do so (file ownership is described later in this chapter). Some can also be
overridden temporarily within a single task (via a SIL subroutine call); for example, a task
can treat a file as a bit string by temporarily using a record type of "U".

For more information on file attributes, refer to Logical File Structures later in this
chapter.

60459410 E 2-1

FILE TYPES

VSOS recognizes the following file types:
e Controllee files
e Data files
e Drop files
e Output files

The file type determines the way the system uses and disposes of the file.

CONTROLLEE FILES
A controllee file (also called a virtual file or a virtual code file) is an executable
file. It is generated by the LOAD utility (refér to LOAD - Generate Controllee File in

chapter 4 of this manual). A task is the execution of a controllee file (refer to
Initiating Controllee Execution in chapter 3).

A controllee file contains all information needed for execution of the object code contained
within the file. 1Its first 512-word block is called its minus page.

The minus page contains control information used by the operating system.

A detailed explanation of the minus page and other system tables is included in the VSOS 2
Reference Manual, Volume 2.

DATA FILES

A data file (also called a physical file) is any CYBER 200 file that is not a controllee
file or a drop file. A data file is not executable.

For example, an object code file is a data file., Although an object code file is not
executable, it is used as input for generation of an executable controllee file.

A data file does not have a minus page.

DROP FILES

The system creates a drop file for each task it executes. When a task references virtual
address space that is not associated with the controllee file or with another mass storage
file, the system associates the virtual address space with the task drop file.

If the task modifies a page of its controllee file and the page must be swapped out, it is
copied to the task drop file and not to the controllee file, Later, if the page is
referenced again by the task, the modified page from the drop file is paged in, but the
unmodified page from the controllee file is not.

2-2 60459410

Modified pages of a mass storage file opened for implicit I/0 can be written to the drop
file instead of to the original file (refer to Q50PEN in chapter 9 of this manual).

A task can create its own drop file if no blocks have yet been written to its drop file.
The system-created drop file for the task is then destroyed. Refer to volume 2 of this
manual for more information.

The system creates the drop file with read and execute access permissions. (File access
permissions are described later in this chapter.)

If you do not specify the drop file length on the LOAD or TASKATT statement, the system
determines an appropriate drop file length for the task, using the controllee file and

common block lengths., The minimum drop file size is an installation parameter (system

release value, #25 blocks).

Drop File Naming Convention

The system derives the name of a drop file from the name of the controllee file. The

controllee name is shifted right one character, truncating the rightmost character (unless

there were fewer than eight characters), and one digit is added as the leftmost character of

the drop file name. The digit added corresponds to the controllee level of the task, as
follows:

° If the task is the batch processor, the digit is 1.

° If the task is initiated by the batch processor or at an interactive terminal, the

digit is 2.
The maximum controllee level is 9.

For more information, refer to Controllee Chains in chapter 3 of this manual,

Restarting a Task

If a task has terminated because of a time limit condition or entry of the break character,

restart the task by executing its drop file. (The break character is an installation
parameter; the release value is !,)

® At a security—-sensitive site that has
imposed the safeguards described in
chapter 7 of the Installation Handbook,
the dump file of a task that has
time~limit aborted may not be restartable
until enabled by the site security
administrator.

® An attempt to restart a task by executing
its drop file fails if the task has
terminated abnormally or the operator has
dropped the task.

Drop file execution fails if VSOS is

using a different small page size than it
used when the drop file was created.

60459410 H

After abnormal task termination, the task drop file exists as a local file. To save the
task drop file, the job must make the drop file permanent by defining it. For example,
suppose a controllee file named GO, initiated at an interactive terminal, aborts because it
has exceeded its time limit. According to the drop file naming convention, the name of the
task drop file is 2G0. To restart the task, enter the following execute line:

ZGOQ

Bound Explicit and Implicit Maps

In the drop file, the system maintains tables that associate the addresses of program data
on mass storage with the virtual addresses used by the program.

When a file is opened for explicit I/0, the system enters the information in a table called
the bound explicit map. The information in the bound explicit map is used by the system
routines that process explicit I/0 requests.

When a file is opened for implicit I/0 and then mapped to a program array, the mapping
information is entered in a table called the bound implicit map. Entries in the bound
implicit map associate a range of virtual addresses with mass storage space. An entry
exists for each virtual address range used.

The size of the drop file map tables is limited. An attempt to add an entry to a full drop
file map is a fatal error. To avoid the error, a program that uses numerous virtual address
ranges should create a file, open it for implicit I/0, and map the virtual address ranges
into the file.

OUTPUT FILES

Output files contain data to be processed by an output device. When the file is closed or
the task that created the output file terminates normally, VSOS generates an output file
with a valid disposition code. This file is sent to the appropriate privileged user task
for processing to the output device. After the file is processed, it is destroyed.

Output files with disposition codes not recognized by the front-end system are evicted, and
an informative message is sent to the user.

By default, an output file is returned to the front-end system that submitted the job or to
the interactive terminal that initiated the task. An output file is assigned the default
disposition code and internal and external characteristics unless specified otherwise.

For RHF output files, specify output parameters on the statement that submits the job file
or on an MFQUEUE statement.

2-4 60459410 E

Print Files

Each output file generated by a task within a job is saved as a member of a print family
(refer to Job Processing in chapter 3 of this manual). The print family is not processed
until the job dayfile (PXXfamnm) is added to the print family. 1In addition, the print
family of an RHF job must end with a last group file (PYYfamnm), which contains routing
information.

VSOS processes a print family before it is routed to the front-end system. It generates a
compressed ASCII file with ANSI carriage control characters as follows:

1. VSOS expands compressed blanks on the file. [Blank compression is described under
Record Mark Delimited (R) Record Format in this section.]

2. VSOS reads the internal characteristics (IC) field of the file”s File Index entry.
If its IC is ASCII with ANSI carriage control, VSOS assumes that the carriage
control characters are correct and performs no conversion,

If its IC is ASCII with ASCII carriage control, VSOS converts the ASCII carriage
control to ANSI carriage control. The ASCII form feed control character, FF (#0C),
when it appears as the first character of the file after a unit separator, US (#1F),
is replaced by the ANSI page eject control character 1 (#31). If there is no form
feed control character, an ANSI page eject control character is added. The ASCII
single space, which is a line without the FF after the US, is changed by inserting
the ANSI space-one-line control character, blank (#20), after the US.

3. The files in a print family are linked, forming one file, Each file delimiter
character, FS (#1C), except the last is removed.

Print Control Characters

Print file control characters follow either ASCII or ANSI control character conventions. In
the ASCII schema, print control is governed completely by the appearance of ASCII control
characters. The FF control character must be the first character of a file or must
immediately follow a unit separator (US). The ASCII control characters and their effect on
vertical spacing are as follows:

Control Character Vertical Spacing
FF (#0C) Page eject
Us (#1F) ‘Single space

60459410 E . 2-5

In the ANSI print control conventions, the first character of a printer/display output
record is not printed or displayed; it is interpreted for vertical spacing control. The
first character of each output record directed to the card punch or to any device other than
a printer or a display unit is transmitted and recorded just as any other character in the
Characters and their effects on vertical spacing
before the printing or displaying of the next record are as follows:

record is, without any special action.

Hexadecimal

Character Code

blank #20

0 | #30

1 #31

+ #2B

- #2D

other other

Vertical Spacing

Single space.
Double space.
Page eject.

No vertical advances; move to the first
the same line,

Triple space.

Single space.

position of

60459410 E

OUTPUT FILE ERROR PROCESSING

When the system attempts to send the output-file—family to the appropriate output device,
condition may occur that may temporarily block the output from arriving at the output
device. You may view the status of the output by executing a Q,0 command interactively

a

(refer to chapter 4 of this manual, Control Statements). Further details of the temporary

error condition are contained in the last—group—file of the output-file-family. The
last-group—~file contains information needed for routing the file to its destination. It
begins with the prefix Q5L or PYY, depending on whether the output is from the MFQUEUE or
the output from a batch job. You can retrieve the output—file~family by asking the operat

is
or

to GIVE the output to its originating user number or to the system user number (refer to the

VS0S Version 2 Operator”s Guide, chapter 4). You can then attach the last-group—file and
examine its contents, using the LOOK utility. Details of the error condition are written
hex word address A0 and begin with a l6-character header as follows:

RETRIES = xxxxx
xxxxx is the retry count. A circular error message buffer follows next. The last five
temporary error messages are saved. The circular error message begins at hex word address
18A. Each entry is 112 characters long and has the following format:
hh.mm.ss MESSAGE FROM xxx FOLLOWS: yyy...yyy
hh.mm.ss is the time of the error encounter;
xxx is either RHF, SIL, or a remote host PID;
YYYe..yyy indicates a maximum of an 84-character error message sent by xXxX.
If the output-file-family is permanently blocked from arriving at the output device, and
your job (either batch or interactive) is still active, the message is sent to your job,

informing you that the file has been evicted and telling you why the file was blocked. If
your job is no longer active, the informative message is sent to the origin of the job.

60459410 J

at

FILE DURATION

A file can be categorized by the duration of its existence in the system. Categories of
user files are scratch, local, and permanent. Scratch files are destroyed at the end of the
task that uses them. Local files are destroyed at the job”s end. Permanent files are
stored until their owners explicitly destroy them (file ownership is described later in this
chapter).

SCRATCH FILES

A scratch file is a system—created file that VSOS uses while executing a task. VSO0S
destroys all scratch files when the task terminates normally. If the task terminates
abnormally, the system saves the files as local files so that it can provide you with
information on the cause of the abnormal termination.

LOCAL FILES

A local file is a temporary file created and used only for the duration of the interactive
session or batch job. Unless you define the file as a permanent file, the system destroys
it at the end of the batch job or interactive session that created it.

VSOS utilities that write local files discard the local file you have specified prior to
writing into the file. This is done because many utilities need special file
characteristics when writing into a file, and allowing the utility to create its own files
relieves you of remembering that sort of detail. However, if you define the file prior to
execution of the utility, the utility does not discard the file.

A local file exists only for the user number and batch job or interactive session that
created the file.

The name of a local file must be unique among both the local files and the attached private
permanent files currently assigned to the job or interactive session,

PERMANENT FILES

A permanent file exists until you explicitly destroy it. It remains stored (on mass
storage) after the termination of the job that created it,

Each permanent file is described in an entry on the disk pack on which it resides. During
VS80S autoload, the pack file entry is copied to a system file; it is later copied to a
system table. Attempts to attach the permanent file search the system table, not the disk
packs themselves.

The system table can hold only 256 permanent file entries per user number. Therefore, even
if you own more than 256 permanent files, only the first 256 files whose entries VSOS finds

and copies are accessible to you. An inaccessible file could become accessible if the
following occurs:

e You, as the owner of the inaccessible file, purge one or more accessible permanent
files.

e During a subsequent VSOS autoload, the entry for the previously inaccessible file is
copied to the system file.

A permanent file must be attached before its data can be accessed.

2-8 60459410 E

- ——— - T U N T e, amac———
Bl o e - - i == Wi wsmsunns
- T T T . m———— h .
~—
TNyt TN T T T e - - W B e o - _
TSR occx—xw»e — WX — - wm \.‘:Egl“lg
—_— = = _ ‘tz___~v‘_—,-:~:rvw fu___ L= ——— QQ‘
RS A . T Wasa a T Y WO T ST RARAA . YO TN gWw 1&\;o°f

C,TLTYNYXIN N T T s @EEETe e 2 SEERA YT e e//mme vt =8 5

Es== =¥ ¥V SRS A = N ¢ e octx>»o T ES T — Wwae c
Y YWMLIA L | OCIXEO MOV Ailwd WU ¥ 0 ©EE= = ¥ X0 = L 4 “:"\—\,-_an ask,
& i, T TTE=ISEy . T Y YETIVAZNMNAS SOwa AT S=SS == mg 'fhﬂt
FAMAAA . THIYIIOO 6"+« T UL = _s@eas== 27y Cc = " . DO - - Rimup
I i oV WENENIR R s ara aVeOFE-R = —--F-RFRgh & o cbult it — —T-WrE & W UA "IN —\ Tig

Al vy = ool A vies oV WUFR-F— —— 3 TEF ¥R . A = n’l‘

- he

P W RN ACIE N ARA i @ eaVaXFR-F = —--"- R v g on VN R = 4 sl « o e WO Y — Y

SYStem doeg

T - VYO A rrmneocaes==>

- T wepovwainYbo O . DA ec £11
MNAA I _=FIHi +. 00CT===>. aeeaa . T THIN e g4 F st
. s s et BEET ° - vtV Yhnee= - b L U P
R . e . f 0 OO T Y XIXTX T Wpovuraw oW

2-9

FILE USAGE CONTROLS
File usage is controlled by the following means:
e File security levels
e File ownership
e File access permissions

Additional file usage controls that can be imposed at security-sensitive sites are described
in chapter 7 of the Installation Handbook.

FILE SECURITY LEVELS

VS0S validates eight security levels, from level 1, the lowest security, to level 8, the
highest security. The default security level, if none is specified, is determined by an
installation parameter value. The system released value for default security level is 1.

Each VSOS user number has a maximum security level assigned to it. No job or task belonging
to the user number can execute at a security level higher than the maximum level for the

user number.,

The security level of a job or interactive session determines the maximum security level of
the files it references or creates. The following are ways of specifying a security level.

Security Level

Associated with Assigned by
Interactive terminal session LOGIN line
Batch job submitted via RHF USER statement
File Statement or progr#m call that creates the file

A task cannot attach or purge a file whose security level is higher than that of the task.
A task cannot give a file to a user number whose maximum security level is lower than that
of the file. Similarly, a task cannot give a file to a pool whose pool boss has a maximum
security level lower than that of the file (refer to Pool Files in this chapter).

FILE PATTERNING

Both permanent and local files are patterned when they are purged if the installation
parameter IP PLEV value is greater than or equal to the security level of the file. The
released value of IP PLEV is 4.

Local files are patterned either when you explicitly return the file or when the system does
it automatically at the end of a job.

FILE OWNERSHIP

Each file has an owner. It can be owned by a user number, a pool, or the public file list,
The corresponding file ownership categories are private, pool, and public. The file
ownership category of a file determines certain access characteristics of the file,

A local file is a private file. A permanent file can be private, pool, or public.

60459410 H 2-9

Ownership rights of nonprivileged users depend on the file ownership category of the file.
A privileged user has ownership rights over all files except local files belonging to other
users,

A file name must be unique among the files in its ownership category currently accessed by a
job. A private file could have the same name as a pool file or a public file attached to a
job. However, a private permanent file attached to a job or interactive session cannot have
the same name as a private local file currently belonging to the job or interactive session.

Your job can have a local file with the same name as one of your permanent files, as long as
the permanent file is not attached by that job. Parallel jobs in execution for the same

user number can have local files of the same name.

Figure 2-1 illustrates the use of file management utilities for each file ownership
category. The utilities named in figure 2-1 are described in chapter 4 of this manual.

2-10 60459410 E

Files Attached or
Always Available

Files Unattached
or Unavailable

to User
REQUEST
Local
Files
RETURNT
DEFINE
DEFINE Attached
Permanent
Files RETURN'
PURGE
Attached —
Pool
PURGE Files PDETACHT
i ne—
EDITPUB Public
Files

TOr end of batch job or terminal session.

15 file is attached to another job, it becomes a local file under that job.

Until Attached

T ———_——— e -
|

|

|

| :

I 5

[

I |

' —_ 5

}— ATTACH Unattached GIVE

| Permanent

. .

T Files PURGETT

]

I E

' ~GvE

. PATTACH Unattached no
| Pool 3 g
1 Files

1)

|

|

I ne
I 7S
| ne
|

A e e e e e e e e —

60459410 E

Figure 2-1. File Ownership

File Search Hierarchy

When searching for a file, VSOS searches the files attached to the job or interactive
session by file ownership category. The categories are searched in the following order:

1. Private files (local and attached permanent).

2; Pool files, in reverse order of that in which their pools were attached. If
attached, the system pool is always the last pool searched.

®

3. Public files.

Private Files

A private file is owned by one user number. The owner of a private file is the user number
that created the file or the user number given file ownership by the previous file owner.
Only the file owner can access a private local file.

The file owner and privileged users can access a private permanent file; other users can
access the file if the owner defines one or more access permission sets for the file.
(Refer to File Access Permissions in this chapter.) '

For a task to access a private permanent file, the file must be attached to the job or
interactive session. A new private permanent file is attached when it is defined; an
existing private permanent file must be explicitly attached. The file remains attached
until it is returned or the job or session terminates.

Only the file owner can change private file characteristics and ownership. Private file

ownership changes when the file owner gives the file to another user number or to a pool., A
privileged owner can give the file to the public file list.

Pool Files

A pool file is a file owned by a pool. A pool is a mechanism for sharing VSOS files. (The
preferred method of file sharing is via explicit file access permissions as described later,
not via pools.) A pool or pool file acts much like a file catalog. Each pool has an entry
in the pool list. Its name must be unique within the pool list. A pool name must consist
of from one to eight characters, beginning with a letter,

The user who creates a pool by adding a name to a pool list is the pool boss for that pool.
Only the pool boss can perform the following functions.

e Give files belonging to the pool to another user

e Purge files belonging to the pool

° Grant other users access to the pool

° Remove user authorization to access the pool

) Destroy the pool

2-12 60459410 E

A pool member is a user granted access to a pool.

Any user can give files to any pool; pool membership is not required. If, however, the user
gives a file to a pool of which he or she is not a pool member, access to the file is
forfeited because the file now belongs to the pool.

When a pool member attaches a pool, all files belonging to the pool (except files having a
security level greater than the security level of the job or interactive session) are
attached.

A job can have up to four pools attached at one time (including the system pool if one
exists). Pool attaches and detaches are relative to a job rather thanm to a user number.
When a batch job terminates, it detaches all pools it attached. Pools attached by an
interactive task are detached at logout.

When a job is initiated by a user and one or more pools is already attached to the job, VSOS
sends the following message to the job dayfile or to the interactive terminal.

WARNING**ATTACHED POOLS

An interactive user can enter $P to list the attached pools.

System Pool

A system pool is a pool of system files automatically attached when the user logs in or
submits a batch job.

All characteristics of a system pool are the same as those of other pools except its rank in
the file search hierarchy. A file is searched for in the system pool after all other
attached pools have been searched.

Use of a system pool can be selected during VSOS autoload. If system pool use is selected,
VS0S searches the system pool for a file before it searches the public files. This means
that if a system pool file has the same name as a public file, the system pool file
effectively replaces the public file,

Public files instead of system pool files can be used when the system pool is explicitly
detached.

Public Files

The system attaches all public files to a batch job or interactive session when the job or
session is initiated. The job or session can then use any public file.

Public files usually contain assemblers, compilers, and other general-purpose routines,
VS0S stores the utilities described in this manual as executable public files.

All public files belong to user number 000000, indicating system ownership., The site
administrator or another privileged user determines the files owned by user number 000000.

60459410 E 2-13

FILE ACCESS PERMISSIONS

An access permission to a file grants you a mode of access to that file. The access
permissions are read, write, append, modify, and execute.

Each access permission allows only that mode of access. No access permission implicitly
grants another access permission. :

Before processing an access request, VSOS checks the access permissions applicable to you
and to the file. This determines whether the request is valid.

To open a file for explicit I/0, read, write, append, or modify permission to the file is
required (refer to Explicit I/0 in this chapter).

To open a file for implicit I/0, read permission to the file is required. To write to a
file using implicit I/0, write and read permission are required (refer to Implicit I/0 in
this chapter).

Read Permission

Read permission to a file allows you to read data from the file, to reposition the file by
skipping records or blocks, and to route the file.

With read permission, a file for explicit I/0 or implicit I/0 can be opened.

Write Permission

Write permission to a file allows you to write data on the file, overwrite existing file
space, and extend the file space.

With write permission, a file for explicit I/O can be opened. Read permission is required
to open a file for implicit I/0; write permission is required to write to the file after it
is opened.

Append Permission

Append permission to a file allows you to write data on the file, but only at the end of the
existing file data. Append access is valid for sequential access files only.

Append permission allows a mass storage file for explicit I/0 to be opened. It does not
allow a file for implicit I/0 or a file assigned to a device other than mass storage to be
opened.

To append data to an empty file (a new file that contains no data), only append permission
is required; the file is positioned for appending data when it is opened.

To append data to a file containing data, both read permission and append permission are
required. Read permission is required to position the file at the end of its existing
data. After opening the file, position the file after its data; if the file ends with a
file delimiter, the file must be positioned before the delimiter so that the new data
overwrites the delimiter. For more information on positioning the file, refer to Appending
Data in chapter 9 of this manual.

2-14 60459410 E

Modify Permission

Modify permission to a file allows you to write data to the file if the write operation does
not extend the file., With modify permission, any record within the file or any block from
the beginning of the file through the highest block previously referenced in the file can be
rewritten.

Modify access is valid only for direct access files.

Execute Permission

Execute permission allows you to request execution of the file. The file is executed if it
is in executable format; that is, it must be a controllee file generated by the LOAD utility.

If you have not obtained execute permission to a file, VSOS aborts a request to execute the
file and sends a message to the job dayfile or to the interactive terminal. (It also sends
the message to the system dayfile).

Execute permission does not grant you permission to perform system functions other than
execution of the file.

Access Permission Sets

An access permission set is the set of access permissions you are granted to a file. An
access permission set can explicitly grant any combination of access permissions.

The possible access permission sets differ for each of the file ownership categories as
follows:

e A public file has a general access permission set that applies to all users of the
file.

e A pool file has a general access permission set that applies to all pool members.
It also has a pool boss access permission set that can grant additional access
permissions to the pool boss.

e A private local file has an access permission set applicable to the file owner.

e A private permanent file always has an access permission set applicable to the file
owner. It can also have a general access permission set applicable to all users
(excluding the file owner) and individual access permission sets for individual user
numbers.,

If a private permanent file has a general access permission set, every user has at
least the access permissions granted by that set. The file owner can grant

additional permissions to a user with an individual access permission set.

A file can have individual access permission sets for up to 16 users.

For each file for which individual access
permission sets are specified, the maximum
number of files the owner can have (256) is
reduced by one file.

60459410 H 2-15

Concurrent File Access
Private permanent files can be shared with other jobs. Private local files cannot be shared.
A private permanent file cannot be shared between users initially. Sharing becomes possible

when the owner of the file defines one or more access permission sets for other users
(general or individual access permission sets).

A shared file is one whose read access and execute access are available to more than one job
at a time. (The job can belong to the file owner or to another user.) If a job is
accessing a file in read mode and/or execute mode, another job can access the file in read
mode and/or execute mode, but cannot access the file in write, append, or modify mode.

If a job is accessing a file in write, append, or modify mode, no other job can access the
file until the first job terminates access.

Concurrent file access is summarized in table 2-1.

Table 2-1. Concurrent File Access Modes

Another job requests access in:

If a job is

accessing Read 'Execute Write Append Modify
the file in: Mode Mode Mode Mode Mode

Read Mode Allowed Allowed Denied Denied Denied
Execute Mode Allowed Allowed Denied Denied Denied
Write Mode Denied Denied Denied Denied Denied
Append Mode Denied Denied Denied Denied Denied
Modify Mode Denied Denied Denied Denied Denied

2-16 60459410 F

FILEI/O

VS0OS provides the following two means of reading and writing data:
e Explicit I/0
e Implicit I/0

Both types of I/0O can read and write virtual files and physical files.

EXPLICIT /O

Explicit I/0 uses buffers within the program space. An explicit I/0 request causes one or
more blocks of data to be copied to or from program buffers.

The system can transfer data to a buffer while the program continues executing. When the
program needs the data from an explicit read request or needs to write more data after an
explicit write request, it must check to see whether the request has been completed. If the
request has not been completed, the program must wait until completion before using the data
(for read) or the buffer (for write).

Explicit I/0 is most efficiently used for transferring multiple blocks of data using
multiple buffers,

IMPLICIT I/O

Implicit I/0 does not use intermediate buffers. A task does not issue implicit I/0
requests. VSOS performs an implicit read operation when a task references data that is not
currently in central memory; it performs an implicit write operation when the file is closed
or the system reassigns the physical central memory space.

To read or write data implicitly, a program opens the file for implicit I/0 and then calls
the SIL Q5MAPIN subroutine to map a mass storage file to an array in its virtual space.
When the task references an element in the mapped-in array, VSOS ensures that the data
mapped to that element is available in memory. When the file is closed, the data stored in
the array is copied to the mass storage file. i

If a program array is not mapped to a file, VSOS maps the array to space in the drop file
(refer to Drop Files in this chapter for more information).

Implicit I/0 is most efficiently used for accessing only one block of data at a time or for
accessing the same file area repeatedly.

60459410 E ’ 2-17

LOGICAL FILE STRUCTURES

The following three levels of file structures are supported by SIL:
° Records
° Groups

° Files

A record is the smallest unit of associated data managed by SIL. Typically, a record is the
result of a write statement in an application program.

The next higher level of file structure is a group of records. A file that contains group
indicators is called a structured file. Multiple groups may appear in a file. Not all
record formats support group structures, An example of a multigroup file is a VSOS job deck
with one input file in it; the control statements comprise the first group, and the input
file is the second group.

The highest level of structure is the file itself, It is known to the operating system by

its file name. It is a single entity to SIL, and programs cannot read beyond the end of a
file.

LOGICAL RECORD FORMATS

A logical record format is the means by which SIL subroutines recognize a logical record
structure. A logical record structure enables you to read and write logical records (and,
if supported, logical groups).

You may specify the record format used for a file you create. SIL supports the following
six record formats (not all record types are supported for all device types):

e ANSI fixed length (F)

e Record mark delimited (R)

e Undefined structure (U)

e Control word delimited (W)

e CYBER Record Manager (L) control word

e System block (B)

ANSI Fixed Length (F) Record Format

SIL writes a fixed number of bytes for each F format record. F format does not suppoit
group delimiters.

You must specify the fixed record length (RLMAX) before reading or writing F format
records. SIL is unable to determine the length of a record if RLMAX is not specified.

When reading F format records, SIL compares the RLMAX and working storage area length (WSL)
values. It returns an error message if the WSL value is less than that of RLMAX.

2-18 60459410 E

When writing F format records, if RLMAX is greater than the length of data to be written as
a record (the working storage area length), SIL appends padding characters to the record.
If the data length is greater than RLMAX, SIL writes a fixed length record and discards the
excess data. SIL error messages are returned for both of these conditions.

Unless a padding character is specified, SIL uses the default character specified by an
installation parameter [system release value, blank character (ASCII code #20)].

Record Mark Delimited (R) Record Format
The R record format is the released system default record format.

When writing R format records, SIL terminates each record with the record mark character.
You may specify a record mark character or use the default character specified by an
installation parameter [system release value, ASCII US (#lF)].

The R format supports group delimiters only if the record mark character is ASCII US or RS
(#1E). 1If the record mark character is ASCII US or RS, SIL recognizes the ASCII GS (#1D)
character as the group delimiter. 1If RS is the record mark character, US characters are
considered data. The ASCII FS (#1C) is the file delimiter for R format files.

When reading R format records, SIL searches for the record mark character delimiting the
record. 1If it does not find the character, SIL reads the number of characters specified by
the WSL value, skips to the beginning of the next record, and returns an error message.
When writing R format records, SIL compresses consecutive blanks unless instructed
otherwise. It replaces strings of more than two blanks with two character codes, ASCII ESC
character (#1B) followed by the number of blanks plus #30. SIL adds #30 to the number so
that the value cannot be mistaken for another ASCII control character code.

When reading R format records, SIL expands compressed blanks unless instructed otherwise.

Undefined Structure (U) Record Format

A U record format file has no structure; it does not support any delimiters.

SIL considers the file as a continuous byte string. You specify the number of bytes that
SIL reads or writes for each call., The data length specified can vary with each call.

60459410 E 2-19

Control Word Delimited (W) Record Format

The W record format uses control words as record, group, and file delimiters. The control
word format is shown in figure 2-2.

r pfdg ps be
Field Bits Content
‘r 0-2 " Reserved for installation use.
3-10 Reserved for Control Data”s use.
P 11 Parity bit used to maintain odd parity in the word.
fd 12-13 When the byte count is 0, these two bits indicate whether the
control word is a delimiter.
Bit
12713
1 1 End-of-file delimiter
1 0 End-of-group delimiter
0 1 Deleted record
0 0 Normal record
A logically deleted record is not passed to you when the file
is read.
wer 14-15 Record continuation flags.
Bit
14 15
0o o0 Complete record
0 1 First piece of record
1 0 Middle piece of record
1 1 Last piece of record
ps 16-39 Number of bytes in previous record piece, including the control
word.
be 40-63 Number of bytes in the record, not including the control word.

Figure 2-2, W Control Word Format

SIL can write a W format record in more than one piece. It prefixes each piece of a record
with a control word describing the piece. The maximum size of a piece is 224-] bytes.

The group and file delimiters are control words following the last record in the group or
file. They are distinguished by a flag indicating the partition level of the control word.

2-20 60459410 E

SIL prefixes each W format record it writes with a control word. The control word contains
the number of bytes in the record and the number of bytes between the control word and the
beginning of the previous control word.

When reading a W format record, SIL reads the control word and then transfers the number of
bytes of data specified in the control word byte count field. It does not transfer the
control word to the working storage area.

When reading a W format file at the group level, SIL transfers data (including record
control words) until it reads a group control word. When reading at the file level, SIL
transfers data (including group and record control words) until it reads a file control word.

When writing a W format record, SIL writes the control word before writing the record data.

When a group or file is written, the first word in the working storage area must be a record
control word. You can include other control words within the working storage area to
delimit records within the group or delimit groups within the file.

When writing at group or file levels, SIL writes the data and then writes the group or file
control word. It enters zero in the byte count field of the control word and the number of
bytes to the beginning of the previous control word in the previous size field.

CYBER Record Manager Control Word (L) Record Format

The L record format allows VSOS to interchange tapes with a CYBER 170 system. By specifying
L record format, VSOS can read tapes written by a CYBER 170 system, using the CYBER Record
Manager (CRM) control word (W) record format. Similarly, the CYBER 170 system can read
tapes written by VSOS, using the L record format,

Each L record is an integral number of data words, prefixed by a control word. Figure 2-3
shows the L control word format.

pifd g ps ubc wc
Field Bits Content
- 0-3 Unused.
p 4 Parity bit used to maintain odd parity within the control word.
fd 5-6 Flag and delete bits used in combination. If the flag bit is

set, the wc field must be O.
Bit

End-of-group delimiter
End-of-file delimiter
Deleted record

Normal record

oop--r—-luw.
O = O o

A logically deleted record is not passed to you when the file
is read.

Figure 2-3. L Control Word Format (Sheet 1 of 2)
60459410 E 2-21

Field Bits Content

- 7-19 Unused.
wer 20-21 Record continuation flags.
Bit
20 21

Complete record

First piece of record
Middle piece of record
Last piece of record

b—‘i—‘ool
v—On—Ol

pPs 22-39 Number of words in the previous record, including the control
word. If the current record is the first record, this field
is 0.

ubc 40-45 Number of rightmost bits not used in the last word (integer

from O through 59).

we 46-63 Number of words in the record piece, not including the control
word.

Figure 2-3. L Control Word Format (Sheet 2 of 2)

As shown in figure 2-3, the control word contains the size of the previous record and the
size of the current record. VSOS uses this information for two purposes: to position the
file by records and as a data reliability check. VSOS checks to ensure that the number of
words read for a record matches the number of words written, as recorded in its control word.

The VSOS L control word is a 60-bit CYBER Record Manager W control word, right justified
with zero fill, in a 64-bit CYBER 200 word. The conversion between the two control words is
performed by the VSOS assembly/disassembly option (ADO), which automatically converts
between 60-bit and 64-bit word sizes. Specifying the L record format also specifies the ADO.

The L record type is valid with I blocking only. VSOS I blocking is interchangeble with
CYBER Record Manager I blocking (refer to I Blocking in this chapter).

System Block (B) Record Format

A system block (B) record is the one VSOS logical record type that is directly related to
the physical layout of the data. A record is equivalent to a logical record unit (LRU).
LRUs are defined by the tape format used (refer to Tape Formats in this chapter).

The primary use of the B record format is to read tapes not written on a CDC system
(stranger tapes).

Reading a stranger tape requires that the tape data be read block by block. Because a B
record is equivalent to an LRU and, for V format, an LRU is equivalent to a tape block, the
specification of B record type and V tape format means that each Q5GETN call reads one tape
block.

2-22 60459410 E

BLOCKING TYPES

Blocking refers to the physical layout of the data on the device. The basic unit or block
is called a physical record unit (PRU). On a disk, a sector is a PRU. On a tape, the data
delimited by interblock gaps (IBGs) is a PRU. A block can contain more than one logical
record; records can span blocks.
VS0S supports the following three blocking types:

e Character count (C)

° Internal (I)

e Record count (K)

C Blocking
Character count (C) blocking writes a fixed number of characters per block. The block size
is the maximum physical record unit (MPRU) size. The MPRU size is determined by the device

and format.

For I, SI, and LB tape formats and for disk, the MPRU size is fixed. For V tape format, you
may specify the MPRU size.

The last block in a tape file can be smaller than the MPRU size.

| Blocking

Internal (I) blocking is used for CDC CYBER 170 tape interchange using the L record type.
VS0S I blocking is equivalent to CYBER Record Manager I blocking.

For I and SI tape formats, the PRU size is fixed. For V tape format, you may specify the
MPRU size. .

Each T block is an integral number of words, prefixed by a control word. Figure 2-4 shows
the I-block control word format.

60459410 E 2-23

P ot:,l’oif,:;' record number word offset
Field Bits Content
0-3 Unused.
P 4 Parity bit used to maintain odd parity within the control word.
5-9 Unused.
block 10-21 Ordinal of the current block ordinal within the file. The
ordinal blocks are numbered beginning with 1.
record 22-45 Ordinal of the first record in the block within the file. The
number records are numbered beginning with 1. If no record begins in
the block, the field is 0.
word 46-63 Word offset of the first control word within the block. The
offset words are numbered beginning with 1. If no record begins in

the block, the field is 0.

Figure 2-4. I Block Control Word Format

The VSOS I-block control word is a 60-bit CYBER NOS Record Manager I block control word,
right justified with zero fill, in a 64-bit CYBER 200 word. The conversion between the two
control words is performed by the VSOS ADO, which automatically converts between 60-bit and
64-bit word sizes. Specifying I blocking also specifies the ADO.

I blocking is valid with the L record type only. The VSOS L record type is interchangeble

with the CYBER Record Manager W record type (refer to CYBER Record Manager Control Word (L)
Record Format in this chapter).

K Blocking

K blocking writes a fixed number of records per block. Records cannot span blocks. The
records per block (RPB) value must be specified.

K blocking is valid only for variable (V) tape format because if the record length is
variable, K blocks are also variable in length.

The last block in the tape file can have fewer records than the RPB value.

2-24 60459410 G

FILE ORGANIZATION

VS0S supports both sequential and direct access file organizations. Sequential access is
the default organization.

Sequential Access Organization

Sequential access to a file accesses each record in sequence. An explicit I/0 call to a
sequential access file reads or writes data at the current file position.

Sequential access files can use any record format. Sequential access file organization is
valid for mass storage files, tape files, and files connected to a terminal.

Direct Access Organization

Direct access to a file accesses a record by its record number. Records in a direct access
file are numbered consecutively, starting with 1.

Direct access file organization is valid only for mass storage files with F format records.

Because each record in a direct access file has a fixed length, SIL can compute the byte
address of the beginning of a record as follows:

(record number - 1) * (fixed record length in bytes)

Unless the site changes the maximum record length installation parameter, specify a maximum
record length when creating a direct access file. The released default value for the
maximum record length is zero. A maximum record length of zero prevents writing on the
direct access file, since zero is used as a special value by SIL, meaning unlimited.

When the record number is omitted on explicit I/0 calls, a task can read or write direct
access records sequentially without changing the organization attribute of the file. SIL
sets the current record number to zero when it opens or rewinds the file; it increments the
current record number by one for each record read or written.

60459410 E 2-25

DEVICE CHARACTERISTICS

VSOS supports the following three device types:
e Mass storage
e Magnetic tape

° Interactive terminal

MASS STORAGE FILES

Mass storage (disk) is essential to system operation on a virtual memory machine. Each page
of central memory must be allocated the corresponding space on disk. Data is automatically
paged in and out between central memory and disk, as required by the executing tasks. As a
result, most of the concepts described earlier in this chapter apply to mass storage files.

All four file types--controllee, data, output, and drop files-—are supported on mass
storage. The three file duration types, scratch, local, and permanent, are supported on
mass storage. Security level is a maintained attribute for mass storage files, and
patterning is done on the disk, depending on the value of this attribute. All three
ownership categories are supported (private, pool, and public); only mass storage files can
belong to pools or be public files. All five access permissions apply to these files. Only
mass storage files can be shared among users. Both explicit and implicit I/0 can be done to
and from mass storage files. Record and blocking types are as follows:

Block Type Record Types
C F
c R
C U
C W

All disk blocks are 512 words. Sequential and direct access file organizations are
supported.

Typical job control statements for creating mass storage files are REQUEST and DEFINE,
specifying file attributes required by the user. DEFINE can create a new permanent file or
can make a local file permanent. File attributes are set for a local file at creation time;
parameters specified on the DEFINE statement are then ignored.

File Space Allocation '

A mass storage file can comprise an indefinite number of segments. A segment is a
contiguous area of disk space; all segments do not necessarily reside on the same disk.

Disk space is allocated automatically, as needed by a file. Physical mass storage devices
are treated by the system as a logical unit, called a device set. Files overflow from one
set member to another within the device set. Every device set has a set number of two
hexadecimal digits. The set number concatenated to the string DVST forms the set name
DVSTnn. The set name is stored in the label of the disk. If your private file has
overflowed, one or more segments may not be available because a device is down. The
truncated parameter must be used to access partial information.

2-26 60459410 F

Initial File Space Allocation
When creating a file, specify the following space allocation conditions:
. Initial file length
e Whether the file can be segmented
e Whether the file is extendable
e Device set to include the file

By default, a file is one device allocation unit (DAU) in length; it may be segmented and
extended. The DAU is selected by the site administration.

When creating a file that cannot be segmented, VSOS attempts to allocate the file on the
pack that is least full and that has sufficient contiguous space. When creating a file that
can be segmented, VSOS allocates it on the pack that is least full, in as many segments as
necessary. If the entire file cannot fit on the pack, it overflows to the pack with the
next most available space in the device set.

Files created for internal use by the operating system are contiguous and nonextendable.
All files created by existing programs, utilities, and FORTRAN run-time routines default to

extendable files.
Select a device set by specifiying any pack in the set using the PACK= parameter on DEFINE,

REQUEST, or COPY. Allocation starts with the least full allocatable pack, which is ON.
Specifying the PACK= parameter does not necessarily put a file on a specific pack.

60459410 G 2-27

File Extensions
If a file is extendable, VSOS extends it for either of the following events:

° The length of a file to be mapped in for implicit I/0 is less than the current small
page size and has write access permission.

° A task attempts to write data beyond the current end of the file.

Initial File Extension - If no space is available for a file extension, the task is
terminated with a message.

When mapping files for implicit I/0, VSOS extends the file to cover the first page in the
mapped region, providing that the file is extendable and write access is permitted. If the
file is nonextendable with write access permitted, only pages that have allocated disk space
can be mapped. If the file has only read access permitted, the mapped region may include
the last block of the file but may not cover pages for which no file space is allocated.

Additional File Extensions — When a task that is writing on a file references an address
beyond the existing end of the file, VSOS attempts to allocate a new segment if the file is
extendable. The size of each extension can be controlled by the user.

The maximum size to which a file can be extended is limited only by an installation
parameter. The maximum size is 4 billion characters.

When mapping files that are extendable and have write permission, the mapped region may be
arbitrarily large. VSOS extends the file to cover pages as they are accessed.

2-28 60459410 G

TAPE FILES

VS0S provides the following two means of accessing tape data:

e A tape can be read on a front—end system and its data copied to a CYBER 200 mass
storage file via RHF.

° A tape can be read by an on-line tape drive.

The information in this subsection applies only to on-line tape I/0. For information on
transferring a file to or from a front—end system, refer to appendix D in this manual.

VSOS supports all four file types (controllee, data, drop, and output) on tape. However, it
supports only explicit I/0 for tape; implicit I/O is not supported. Therefore, although a
controllee or drop file can be copied to tape, the tape copy cannot be executed or used to
restart a task.

Tape files are local private files; they cannot be shared. Read access, write access, or
read and write access are allowed. You can request access to tape labels and tape data
separately on a REQUEST statement. For example, read access to the tape labels and write
access to the tape data can be requested.

Because users often store related files on a single tape volume or set of volumes, VSOS
allows you to specify a set of characteristics applicable to all files on the tape volumes.
This set of genmeral characteristics is specified on the REQUEST statement for the tapes and
is associated with the multifile name (MFN) specified on the statement.

If the tape contains only one file, the file can be referenced by its MFN. However, if the
tape contains more than one file, each file is referenced by a LABEL statement that
specifies the MFN and a logical file name (LFN) for the file. The LABEL statement can also
override any of the characteristics specified on the REQUEST statement; the override applies
only to that file.

Tape Drive Reservation

Because tapes are dynamic to VSOS (instead of permanently mounted as 819 disks are), the
level of tape resources needed by the system must be identified.

The RESOURCE statement of a batch job that accesses tape files must reserve one or more tape
units for use by the job. The initial tape unit reservation count is maintained until the
job terminates unless a RETURN statement or Q5RETURN call decrements the reservation count.

An interactive session cannot use the RESOURCE statement. Therefore, tape drives cannot be

reserved in interactive sessions. Instead, the request for a tape file reserves a tape
drive. If all tape drives are committed, an error message is returned.

60459410 G 2-28.1/2-28.2 |

Volume Assignment

To read or write data on a tape volume, associate the tape volume with a local file name.
To do so, you must request a tape file with a REQUEST control statement or Q5RQUEST call.
The statement or call specifies the file name and its tape volumes.

A tape volume is identified by its volume serial number (VSN). Each tape volume should have
its VSN on an external label readable by the operator. If it is an ANSI standard labeled
file, it also has its VSN recorded in its VOLl1 label. A new tape can be blank labeled by
the operations staff with a BLANK control statement so that VSOS can identify the tape.

When VSOS processes a tape file request, it searches a system table for the first tape
volume specified on the request. The system table contains an entry for each volume
currently mounted on an on-line tape unit. If VSOS finds the requested volume and it is not
already assigned to a job, it assigns the tape unit to the file. If VSOS does not find the
volume, it prompts the operator to mount the volume. When the volume is mounted, VSOS
assigns the tape unit to the file.

If the tape file request does not specify a tape volume for the file, VSOS prompts the
operator to mount a tape volume and enter its VSN with a command assigning the volume to the
file.

Volume Switching

VSOS supports multivolume tape files. Up to 255 tape volumes can be associated with a file
name. The volumes are specified in a VSN list on the tape file request.

By default, VSOS performs automatic tape switching; that is, when the end of the current
tape volume is encountered, VSOS switches to the next volume in the file and continues the
interrupted operation.

If you like, you can prevent automatic tape switching. To do so, you must specify the ETP
parameter on the Q50PEN call that opens the tape file. Subsequently, when VSOS encounters
the end of the current tape volume, it terminates the current operation and returns control
to the caller. The caller must then call the Q5REELSW routine to switch the file to the
next volume and issue another request to resume the terminated file operation.

A Q5RQUEST call specifies the order in which the tape volumes in the VSN list are used. The
tape volumes are used in sequential order.

Tape Labeling

VSOS can read and write unlabeled, nonstandard labeled, and ANSI standard labeled tape
files. You specify the labeling type on the tape file request.)

60459410 E 2-29

Unlabeled Tape Files

An unlabeled tape file contains no identifying tape labels. When an unlabeled tape volume
is mounted, VSOS cannot read the VSN from the tape. The operator mounts the tape and then
enters the VSN of an unlabeled tape volume.

When. an unlabeled tape file is opened, VSOS positions the tape at its load point. The job
can then read or write data on the tape.

After writing data on the tape, VSOS marks the end of the data with an end—of-file
indicator. The end-of-file indicator is either an EOFl label or two tape marks, depending
on the tape format. Figure F-2 in this manual illustrates both unlabeled tape formats.

Tape Files with Nonstandard Labels

A tape file with nonstandard labels contains labels that do not conform to ANSI standard
X3.27-1978. As with an unlabeled tape file, VSOS cannot identify a nonstandard labeled tape
file by a VSN written on the tape. The operator must enter the tape VSN when mounting the
tape.

As is the case for a file with ANSI standard labels, write label processing (LPROC=W) can be
requested for a nonstandard labeled file. Write label processing overwrites existing header
labels when the file is opened. However, the header labels must be specified in an array
specified on the Q50PEN call. End-of-file labels can also be specified in an array on the
Q5CLOSE call that closes the file.

VSOS positions the file after its header labels when it opens the file, just as it does for

a file with ANSI standard labels. However, VSOS does not verify the contents of the labels,
and it cannot position the tape by label groups within the tape data.

Tape Files with ANSI Standard Labels

A tape file with ANSI standard labels contains labels that conform to level 2 of ANSI
standard X3.27-1978. The ANSI standard label formats are given in appendix F of this manual.

ANST standard labels serve to identify and delimit the data on the tape volume and each file

on the volume. A multifile set must use ANSI standard labels to delimit the files in the
set.

Required Labels - The following ANSI labels are required.

Label : Description

VOL1 Marks the beginning of a tape volume

HDR1 Marks the beginning of a tape file

EOF1 Marks the end of a tape file

EOV1 Marks the end of a tape volume (used only if the end of the volume precedes

the end of the file)

2-30 60459410 G

A BLANK control statement writes the VOL1 label on a new tape. This function is normally
performed by the operator, who must specify the VSN to be recorded in the label. An
accessibility character that restricts access to the volume can also be specified. If the
VOL1 label contains a nonblank accessibility character, attempts to use the volume must
specify the accessibility character.

The HDR1 label identifies the file it precedes. It can also contain an accessibility
character to restrict access to the file. As with the VOL1 label, if the HDRl label
contains nonblank accessibility characters, attempts to access the file must specify the
accessibility character. Also, if the accessibility character is A, the user attempting to
access the file must be the owner of the volume, as identified in the VOL1l label.

The expiration date in the HDRl label prevents attempts to overwrite the file before the
file retention period has expired. You specify a retention period when the file is written,
and the retention period is added to the creation date to determine the expiration date for
the file.

When accessing a file belonging to a multifile set, specify its file identifier, its file
sequence number, or both, as recorded in its HDRl label. When the file is opened, VSOS
searches for the HDR1 label containing the specified values, When it finds the specified
HDRl label, it checks to ensure that the accessibility character and expiration date do not
prevent access to the file. If access is not prevented, the tape is positioned at the
beginning of the file data., For more information on multifile sets, refer to the LABEL
control statement or Q5LABEL call description in chapter 9 of this manual.

Except on V format unlabeled files, the end of the written data is always marked by an EOF1l
label, TIf the end of the volume precedes the end of the file, the end of the data on the
volume is marked by an EOV1 label.

Both EOF1 and EOV1 labels contain a block count. The EOFl block count is the number of data
blocks in the file., The EOV1 block count is the number of blocks (data and labels) written
on the volume., When a file is opened for read access, VSOS keeps count of the number of
blocks read. When it reads an EOFl or EOV1 label, it compares its current block count with
the block count in the label. If the values do not match, it returns a dayfile message,
notifying the user of the discrepancy.

Optional Labels - The following additional optional labels can also be specified.

Label Description
UVLn Sequence of one to nine additional volume labels (n is a digit, 1 through 9).
HDRn Sequence of one to eight additionai header labels (n is a digit, 2

through 9).
UHLa Sequence of additional header labels (a can be any character).

EOFn Sequence of one to eight additional end-of-file labels (n is a digit, 2
through 9). '

UTLa Sequence of additional trailer labels (a can be any character).
Except for the label identifier and the label length (80 bytes), VSOS does not check the

contents of the optional labels, The optional label formats are shown in appendix G of this
manual.

60459410 E 2-31

HDRn and UHLa labels can be specified on the Q50PEN call that opens the file for write
access. EOFn and UTLa labels can be specified on the Q5CLOSE call that closes the file,
Subsequent Q50PEN and Q5CLOSE calls to the file can return the contents of the optional
labels.

To write the optional beginning-of-volume and end-of-volume labels (UVLn and UTLa), perform
end-of-tape processing (refer to Volume Switching in this chapter). Call QSREELSW to
continue file processing. The call can also specify labels to be written at the end of the
current volume and labels to be written at the beginning of the next volume.

Tape Data Recording

A tape file request can specify the data recording density and data conversion options.
However, if the tape is already labeled, the specified recording density and character set
conversion cannot conflict with the density and character set used for the tape labels.

Recording Densities

VSOS can read and write only 9-track tapes. The 9-track tapes can use either of the
following two recording densities:

PE 1600 cpi

GE 6250 cpi

Data Conversion Options

A tape file can be a coded or a binary tape file. VSOS considers coded tape data to be a
stream of character codes; it considers binary tape data to be a stream of bits. Only
character data is stored on coded tape files; binary tape files can store either character
or numeric data.

By default, VSOS assumes that a tape file is binary. To indicate that the file is coded,
the tape file request must specify the CONVERT parameter.,

If the CONVERT parameter is specified, VSOS converts the tape data to and from the character
codes in the character set specified by the CM parameter. The CM parameter can specify
either the ASCII or the EBCDIC character set. (The ASCII character set is the default.)

The assembly/disassembly option (ADO) provides for binary tape interchange between the CYBER
170 and CYBER 200 systems. The ADO is valid for binary files only; it is not valid for
coded files.

If selected, the ADO automatically converts between the CYBER 170 60-bit word size and the
CYBER 200 64-bit word size. For reading data, each 60 bits read is right justified with
zero fill within a 64-bit CYBER 200 word. For writing data, only the rightmost 60 bits of
each 64-bit word are written,

VSOS provides conversion routines to convert 60-bit CYBER 170 numeric data to and from

64-bit CYBER 200 numeric data formats. These routines are described in appendix D of this
manual.

2-32 - ‘ 60459410 E

Tape Data Organization

Tape data has three levels of organization. Like mass storage data, tape data is organized
into logical records and, if supported by the record type, logical groups. Tape data is
also organized into tape blocks (PRUs). Depending on the tape format used, tape PRUs are
grouped into logical record units (LRUs).

When accessing a tape file, you specify the tape format, blocking type, and record type for
the file or use the default values (release values, LB format, C blocking, and R record

type).

Not all combinations of tape format, blocking type, and record type are valid; table 2-2
shows the valid combinations.

Table 2-2. Blocking Type, Tape Format,
and Record Type Combinations

Blocking Type and Tape Format
BT=C BT=1 BT=K
Record
Type 1,SI LB V,NV 1,SI LB V,NV 1,sI LB V,NV
F - b4 X - - -- -- - X
R -- b4 X - - - - -— b4
B X X X - - - - - X
U X x X -= -= - - -= X
W - X X - - - - - X
L - - - X -- X - - -
x = Valid combination
—-— = Invalid combination

60459410 E 2-33

Logical Record Format

Besides the mass storage record types described earlier in this section, the following two
additional record types are available for tape files.

] CYBER Record Manager control word (L)

e System block (B)
The L and B record formats are described with the other logical record formats earlier in
this chapter.
Tape Formats
The tape format determines the PRU size and the definition of an LRU.
VS0S supports the following five tape formats:

° NOS internal (1)

e SCOPE internal (SI)

e Large block (LB)

e Variable (V)

e Non—-ANSI Variable (NV)
I Tape Format - The NOS internal (I) tape format is the default tape format for CYBER 170
NOS systems. It is recommended that I tape format, I blocking, and L record type be used
for tape interchange with NOS systems.
Within the I format, the actual PRU size can range from 6 to 3840 bytes. Each PRU is
terminated by a 48-bit terminator. A 6-byte PRU is a PRU consisting solely of the
terminator (a zero-length PRU). A 3840-byte PRU is a full-length PRU.

The tape hardware driver appends the PRU terminator when it writes a PRU and strips the
terminator when it reads a PRU. The PRU terminator is never copied to an I/O buffer.

The end of an LRU is marked by a short PRU (less the 3840 bytes). As shown in figure 2-5,
the terminator on a short PRU contains the level number of the LRU.

byte count PRU number level
Field Bits Content
byte count 0-11 Number of bytes in the PRU, including the PRU terminator.
PRU number 12-35 Number of PRUs since the beginning of the file,
level 36-47 Level number (0 indicates the end of an LRU, F indicates

the end-of-file).

Figure 2-5, T Format PRU Terminator

2-34 60459410 F

A PRU consisting of only a PRU terminator containing a level number of F (17 octal) is an
end-of-group indicator. The system ensures that an end-of-LRU always precedes an end-of-
group indicator by writing, if necessary, a PRU terminator with a level number of zero
before the end of group.

An I format tape file always contains an even multiple of bytes.

When reading an I format file, the system checks to be sure that the actual number of bytes
read and the actual current PRU number match the byte count and PRU number in the PRU
terminator. A mismatch is processed as a parity error.

SI Tape Format — The SCOPE internal (SI) tape format is the default format for CYBER 170
NOS/BE systems. It is recommended that SI tape format, I blocking, and L record type be
used for tape interchange with NOS/BE systems.

As in the I format, the actual PRU size in the SI format can range from 6 to 3840 bytes.
However, only the short PRU that ends an LRU has a PRU terminator. As shown in figure 2-6,
the PRU terminator contains the level number of the LRU. If the level number is F (17
octal), the system returns end-of-group status.

The tape hardware driver appends the PRU terminator when it writes a short PRU and strips
the terminator when it reads a short PRU. The PRU terminator is never copied to an 1/0
buffer.

The system may write 4 extra zero bits to tape in order to preserve the lower 4 bits of an
8-bit byte.

552335522754 octal level
Field Bit Content
- 0-41 552335522754 octal
level 42-47 Level number (0 through E indicates the end-of-LRU; F indicates

end-of-file),

Figure 2-6. SI Format PRU Terminator

60459410 J 2-35

LB Tape Format — The standard PRU size for the LB format is 32768 bytes.

Each PRU in the LB tape format has a 48-bit terminator. The terminator format is shown
in figure 2-7. A PRU shorter than 32768 bytes indicates the end of an LRU. If the
level number is F (17 octal), the system returns end-of-group status.

PRU number byte count level
Field . Bit Content
PRu number 0-23 Current PRU number.
byte count 24-39 Number of bytes in the PRU excluding the terminator.
level 40-47 Level number.

Figure 2-7. LB Format PRU Terminator

The tape hardware driver appends the PRU terminator when it writes a short PRU and
strips the terminator when it reads a short PRU. The PRU terminator is never copied to
an 1/0 buffer.

The system may write 4 extra zero bits to tape in order to preserve the lower 4 bits of
an 8-bit byte.

Only C blocking is valid with the LB tape format. The L record type is not valid with
the LB tape format.

V Tape Format - The V tape format can have variable PRU lengths up to the maximum PRU
(MPRU) size. You may specify the MPRU size, although it cannot be greater than the
buffer size (a maximum of 48 large pages). The default MPRU size is 32768 bytes (4096
words) .

Within the V format, each PRU is an LRU. A PRU does not have a terminator; it has no
level number associated with it.

For unlabeled V format tapes, a tape mark embedded in the file data is an end—of-group
indicator if record type B is used.

K and C blocking are valid with the V format. The L record type is not valid with the
V tape format.

® 2-36 60459410 J

NV Tape Format = The NV tape format is the same as the V tape format, with one
exception. The NV tape format uses embedded tapemarks as end-of-group indicators for
both labeled and unlabeled tapes. This allows you to write and read a labeled tape
whose data does not conform to the ANSI standard.

Like the V format, the NV format can have variable PRU lengths up to the MPRU size.

Each PRU is an LRU. All record types and blocking types valid for the V format are
also valid for the NV format.

In addition, specifying the NEOI option on unlabelled NV tapes tells VSOS not to
recognize two consecutive tape marks as EOIL., This allows reading or writing tapes
which do not conform to the VSOS EOI conventions for unlabelled NV tapes.

Tasks (such as COPY and COPYL) reading tapes
with the NEOI option turned on may return
unpredictable errors due to reading past the
end of recorded data, since no EOF or EOIL
status is returned by the system.

Tape Error Processing

By default, VSOS attempts to recover each error detected when reading or writing tape data.
It uses the information stored in the system tapes table to reattempt the read or write
operation. If it succeeds in recovering the error, the read or write operation continues.

When it encounters the end of a volume or when a file is closed, VSOS sends messages to the
job dayfile and the system dayfile to report the accumulated recovered errvors.

VS0S sends each of the following dayfile messages if the count in the message is not zero:

WRITE RECOVERABLE ERRORS=nnnn

READ RECOVERABLE ERRORS=nnnn

SINGLE TRACK CORRECTABLE ERRORS=nnnn
DOUBLE TRACK CORRECTABLE ERRORS=nnnn
DEVxxx BLOCK COUNT=nnnn

A listing of the system error file may be obtained from site personnel.

60459410 J 2-36.1/2-36.2 @

While reading a file, VSOS maintains a count of the blocks read. If the block count in an
EOV1 or EOFl label does not match the block count VSOS has maintained, VSOS sends the
following messages to the job dayfile and the system dayfile:

DEVxxx BLOCK COUNT MISMATCH
CURRENT BLOCK COUNT=nnnn
LABEL BLOCK COUNT=nnnn

User Error Processing

When you request a tape file, disable standard error recovery. Disable hardware error
correction for single-track errors on GCR tapes (6250 cpi).

To replace standard error recovery, specify user error processing (UEP) when opening the
file with a Q50PEN call. When you select user error processing, a tape 1/0 request that
detects an error returns control to you, with a status code of 1476. You then call Q5GETFIT
with the IOER= parameter to get the specific tape error code from the FIT. The possible
tape error codes are listed in table B-4. .

Now determine further processing of the error. If reading data, the program could skip
forward past the record that returned the error, clear the tape error status by calling the
Q5CLIOER subroutine, and continue reading the file.

CONNECTED INTERACTIVE TERMINAL FILES

A file connected to a terminal allows communication between an executing program and an
interactive user. Only a task initiated by an interactive execute line can request or open
a file connected to a terminal. A connected file cannot be requested or opened by a batch
task or by an interactive task started by another interactive task.

Files connected to terminals are regarded as special purpose files and their characteristics
are more restricted than those of other device types. These files can be used only as data
files. They are always local, private files. They are sequential, with record type R,
block type C, and no blank compression.

Specify the access permissions (read, write, or read and write) and security level for the
connected file when requesting the file.

A program can read and write to a file connected to a terminal, using SIL Q5GETN and Q5PUIN
calls. It cannot perform implicit I/0, FORTRAN unformatted or buffered I/0, or Q7BUFIN and
Q7BUFOUT calls on the file. It also cannot read or write partial records to the file.

As an interactive user, you can enter record, group, and file delimiters through a file
connected to a terminal. To do so, enter one of the following input lines followed by a
carriage return. The $ in the following input lines represents the system special character
that prefixes request lines. ‘

Input Line k Program Receives
$SEOR Two consecutive record delimiters (an empty record)
SEOG Group delimiter
SEOF File delimiter

60459410 G 2-37

Similarly, the following output lines appear when the program outputs logical structure

indicators.
Output Line Program Sent
$EOR Two consecutive record delimiters (an empty record)
$EOG Group delimiter
$EOF File delimiter

The maximum length of an input or output line passed to or from the remote system is 999
characters. If a line exceeds 999 characters, it is truncated to that length, but no error
condition is returned.

The following is the general processing sequence for connected files.

1.

5.

While logged in at an interactive terminal, enter a REQUEST execute line to create a
file connected to the terminal. The file name must be that of the file referenced
within the program,

Enter an execute line for the program that communicates through the connected file.
The program opens the connected file.

The program can now read or write logical records to the connected file. A record
written to the file appears as a line of output at the terminal. A request to read
a record from the file results in a prompt (..) at the terminal,

To respond to a prompt, enter a line of input followed by a carriage return. The
system passes the line, without blank compression, to the working storage area named
on the read request.

The program closes the connected file when the program completes its use of the file.

Explicitly return the connected file, or let the system return the file when you log
out.

The remote RHF application that supports interactive communication with VSOS adds a carriage
return/line feed to output lines. For more information, refer to the RHF documentation for
the remote system.

2-38

60459410 E

TASK EXECUTION 3

A task is the execution of a controllee file for a user number. A batch job or interactive
session is a sequence of tasks.

INITIATING CONTROLLEE EXECUTION

An interactive or batch execute line initiates a task by naming the controllee file to be

executed. The interactive and batch execute line formats are described later in this
chapter.,

VS0S searches for the controllee file among the files assigned to the job or interactive
session. The job or session must have execute access permission to the file. To execute

the file and receive dump information if its execution aborts, the job or session must have
read and execute access permissions to the file.

At security-sensitive sites, users running
under a production user number can only
execute production controllee files. Refer
to chapter 7 of the Installation Handbook
for details.,

Assuming that the job or session can access the controllee file, VSOS creates the task drop
file (refer to Drop Files in chapter 2) and initiates controllee execution.

60459410 H

VIRTUAL SPACE MAPPING

Code and data references during controllee execution are by virtual address.

The first block of the controllee file (its minus page) is not mapped to task virtual
space. VSOS reads the minus page into a system table, where its information is used to
control task execution. The second block of the controllee file (containing its register
file) is also read into a system table,

The third and subsequent blocks of the controllee file are mapped, beginning at the origin
address recorded by the LOAD utility.

LOAD also records the virtual address ranges to be used for the following areas, which are
required for controllee execution but not stored in the controllee file.

e Labeled common blocks for which no space is assigned within the controllee file
(blocks specified by the GROS and GROL LOAD parameters)

° Blank common

The virtual range for the dynamic stack (used for subroutine linkages and intermediate
vector results) is assigned as required during task execution.

The virtual address ranges for the contents of the controllee file are initially mapped to
physical space in the controllee file. However, after a controllee file page is modified,
the page is mapped to the drop file, and all subsequent paging of the modified page is to
the drop file. In this way, the original controllee file is never modified. The mapping of
task virtual space is shown in figure 3-1.

TASK VIRTUAL SPACE MASS STORAGE SPACE
VIRTUAL BLOCK
ADDRESS NUMBER CONTROLLEE FILE
0 ~ . 1
REGISTER FILE UNMODIFIED MINUS PAGE READ INTO
ORIGIN PAGES 2 SYSTEM
CODE MODULES «<MAPPED TO >< REGISTER FILE TABLES
CONTROLLEE 3
DATABASES FILE CODE MODULES
LABELED COMMON DATABASES
MODIFIED PAGES
BLANK COMMON MAPPED TO LABELED COMMON
DROP FILE L
DYNAMIC STACK
DROP FILE

BOUND IMPLICIT MAP
BOUND EXPLICIT MAP

Figure 3-1. Task Mapping

3-2 60459410 E

CONTROLLEE CHAINS

A task can start another task. It is then the controller of the started task. The started
task is the controllee of its controller.

A controller and its controllee form a controllee chain. Each task within a chain has a
level., The first task (the batch processor) is at level 1; it is a controller, but not a
controllee. The second task (a utility or user system) is at level 2; it is a controllee
and can also be a controller if it starts a task; the task it starts is at level 3.

Except for the first and last tasks in the chain, each task in the chain is both a
controller and a controllee. The lowest possible level in a chain is level 9; the maximum
number of tasks in a controllee chain is nine.

In any controllee chain, only one task is eligible for execution at a time. When a
controller starts a controllee, it is suspended until control is returned by the controllee.

The level 1 task of a batch controllee chain is always the batch processor. An interactive
controllee chain does not have a level 1 task, because the interactive processor in the
virtual system is not a task. However, for consistency, the Q5LSTCH routine described in
chapter 8 of this manual lists the interactive processor as the level 1 task of an
interactive controllee chain.

As described later in this chapter, a job is a sequence of level 2 tasks initiated by the
batch processor.

60459410 E 3-3

SYSTEM ACCESS

To start a task, access VSOS. VSO0S supports both batch and interactive access.

To access VSOS interactively, log in at an interactive terminal connected to a front—end
system. After logging in to the front-end system, log in to VSOS.

For batch access to VSOS, send a VSOS batch job file from a front-end system to the CYBER
200 system.

USER VALIDATION

Both batch access and interactive access require user validation. User validation is
performed when VSOS processes a LOGIN line or a USER statement.

User validation requires entry of a valid user number. Entry of the password for the user
number is also required unless the password is blank.

The user number determines your privileges and the files that you can access. The account
identifier can be used to charge you for resource usage. The account identifier default is
the account number to which the operating system automatically charges the usage.
The VSOS user directory defines the valid VSOS user numbers. Each valid user number has an
entry containing the number, its password, and the validations for the user number. The
following are the user number attributes.

° Permission to execute high priority tasks

® Permission to perform privileged functions

° Permission to use the variable rate accounting rate feature (for more information,
refer to volume 2 of this manual)

e Permission to access tapes via batch processing and/or interactive sessions

° Permission to access the system interactively

e Maximum security level (refer to File Security Levels in chapter 2 of this manual)
e Valid job categories (refer to Resource Allocation in this chapter)

° Valid account identifiers (default account number, master and/or optional account
numbers)

® System seconds available (refer to Accounting in this chapter)
e Default project number
e User project control

Only the installation management user number can change the user directory. For user number
information, ask site personnel.

3-4 60459410 H

INTERACTIVE SYSTEM ACCESS
VSOS supports interactive access through RHF. In each case, perform the following steps:
1. Log in to the front-end system.

2. Request that the front-end RHF software provide a connection between the interactive
terminal and the CYBER 200 system.

3. Log in to VSOS.

The statements required to request a connection to the CYBER 200 system differ, depending on
the front-end system software. The RHF interactive access statements are described in the
RHF manual for the front-end system.

VSOS INTERACTIVE LOGIN
After connecting to the CYBER 200 system, log in to VSOS with a LOGIN command.

The LOGIN command identifies you. The system checks to be sure that the specified user
number is a valid user number and that the specified password is the correct password for
your user number.,

The LOGIN command connects you to a job descriptor number (JDN).

The LOGIN command may specify the account identifier to which resource usage during the
session is charged. It may also specify the security level of the session. A task started
during the session cannot access a file with a security level greater than the session
security level.

If you logged out or were disconnected while a task was still active, the LOGIN reconnects
you to the existing job descriptor number. If no tasks were running when you logged out or
were disconnected, a subsequent LOGIN connects you to a new job descriptor number.

The format of the LOGIN command is shown in figure 3-2. A blank, comma, or left parenthesis
must follow the LOGIN verb. A terminating period or right parenthesis is valid but not
required. To send the LOGIN line, press carriage return.

The LOGIN parameters must appear in the order shown in figure 3-2, The parameter separator

is either a blank or a comma. Except for the last parameter, parameter omission is
indicated by two consecutive commas.

60459410 E 3-5

LOGIN,userno,password,account,n
userno User number (six decimal digits). This parameter is required.

password Password (one to eight characters). To specify a blank password,
omit the parameter. To enter a password that contains special
characters, refer to the discussion of the PASSWORD control
statement in chapter 4 of this manual., Site personnel determine
during system installation whether user password entry is
required or optional.

account Account identifier (one to eight characters). This parameter is
optional., If an account identifier is omitted, the user’s
designated default account identifier is used.

n Optional security level of the interactive session (1 to 8). If
a security level is omitted, the default value chosen by the site
is used.

Figure 3-2, LOGIN Command Format

BATCH SYSTEM ACCESS
VSOS processes input in batch mode when it is received as a batch input file.

The CYBER 200 RHF application program, QTFS, receives batch input files sent by RHF software
on front-end systems. QTFS accepts multiple files on one connection. A front-end system
that uses RHF software is called a remote system.

QTFS performs the following functions:
l. Copies the batch input file as R format records to a CYBER 200 mass storage file
2, Validates the user submitting the batch job
3. Gives the batch input file to the input queue manager

QTFS creates a mass storage file that has an eight-character name. The name is derived by
padding to eight characters the job name supplied by the remote system and ensuring that the
name is unique in the input queue and different from the input job name. To get a unique
name, increment the rightmost characters (A to BtoC to . . . Z).

After storing the batch input file in the mass storage file it creates, QTFS reads the USER
statement from the file. The USER statement must be the second statement in the file. The
first statement is used by the remote system (refer to RHF documentation for the remote
system).

QTFS uses the USER statement information to validate your access to the CYBER 200 system.
Assuming that you are a valid user, QTFS removes the first two statements from the file
before it gives the file to the input queue manager (IQM).

IQM processes the RESOURCE statement if you included one in the job. The RESOURCE statement
must be the third statement in the batch input file if one is used. RESOURCE statement
processing is described under Resource Allocation in this chapter.

All other control statements for the job follow the RESOURCE statement. Batch job structure
and the processing of a batch job are described later in this chapter.

3-6 60459410 H

INTERACTIVE SESSION

VSOS login initiates an interactive terminal session. Enter a $BYE request line to end the
session.

To enter an interactive input line, type the line at the terminal keyboard and then press
the carriage return key to send the line to VSOS.

Enter the following types of interactive entries:
e Break character
] Interactive terminal request
e Interactive execute line

e Input to an executing task

BREAK CHARACTER

The break character terminates the task. It transfers control to the immediate controller
of the task.

To terminate a task within a batch job, you must use the $SU command to determine the JDN
and job name of the job, then request that the operator drop or kill the job. Control
returns to the batch processor, which searches for an EXIT statement in the comtrol
statement sequence of the job. If it finds one, it continues execution after the EXIT
statement.

If the terminated task is an interactive task with no controller, it can be restarted by
executing its drop file (refer to Drop Files in chapter 2).

The default break character is !, but it can be changed during system installation.

INTERACTIVE REQUEST LINES

An interactive request line i1s a special entry that the interactive processor executes
without initiating a new task.

The interactive processor recognizes a request line when an input line begins with the
special character. By default, the special character is $, although the site can change the

special character during system installation. You may change the special character during a
terminal session; the procedure to follow is described next.

Changing the Interactive Request Special Character

The following request line changes the interactive request line special character:

$=sc

60459410 G 3-7

The single character represented by sc becomes the new special character that must begin all
interactive request lines. VSOS responds with:

(SC)=sc

where sc is the new special character The new character must be a printable ASCII character
between #21 (!) and #7E (~). If the new character is not in this range, the special
character is not changed and VSOS responds with the message:

BAD (SC)

Terminal Information Requests

The following request lines list information at the terminal.

Request
Line Information Returned
$T Current date and time in format mm/dd hh.mm.ss; mm/dd gives the month and
day and hh.mm.ss gives the hour, minute, and second.
$s Current state of the program executing under the current JDN of the
interactive session. Table 3-1 lists the possible responses.
$BB Current accounting information for the program executing under the current
JDN of the interactive session. It lists the remaining time available.
$2? Current date, time, accounting information, program state, and job
descriptor number of the executing program.
$su Current activity, job descriptor number, and job/session name for all of
the user's jobs in execution.
$PR Number of interactive tasks waiting for execution.
$p Pools attached to the user's interactive session.
Table 3-1. Program States (Sheet 1 of 2)
Response Meaning
RUNNING In execution.
WAIT ALT Waiting for CPU assignment.
WAIT TPE Waiting for tape assignment.
WRT CNTR Waiting for controller to be assigned initial memory resources.
WRT CNTE Waiting for controllee to be assigned initial memory resources.
RCV CNTR Waiting for message from controller.

3-8 ' 60459410 G

Table 3-1. Program States (Sheet 2 of 2)

Response Meaning
RCV CNTE Waiting for message from controllee.
SND CNTR . Waiting to send message to controller.
SND CNTE Waiting to send message to controllee.
SND OPR Waiting to send message to operator.
SND TTY Waiting to send message to teletype.
DUMPING Input/output being dumped to disk.
FINISH Finished; clean-up is in progress.
SUSP OPER Suspended by system operator.

SUSP SYS Suspended by system.

WAIT MP Waiting for minus page to be assigned.
RCV OPER Waiting to rgceive message from operator.
WAIT mfx Waiting for mainframe identified.

NIL No tasks in execution.

Case Conversion Request

When a terminal session starts, VSOS translates all input to uppercase before processing.
The following three request lines control this action.

Request
Line

SLC
$uc

$X

Information Returned

Enable lowercase input. VSOS will not translate characters to uppercase.
Disable lowercase input. VSOS will translate characters to uppercase.
Toggle case translation. If VSOS was translating characters to uppercase,

it will no longer do so. If VSOS was not translating characters to
uppercase, it will begin to.

The response to these requests is either a lowercase L or an uppercase U. If the lowercase
L is returned, VSOS will not be translating characters to uppercase. If the uppercase U is
returned, VSOS will be translating characters to uppercase.

VS0S understands all interactive request lines and connected terminal file delimiters
whether case conversion is being performed or not.

60459410 J

Operator Message Request

The following request line sends a message to the system operator in the K display:
S0P message

When the message is sent, the system responds with the following line:

[OK]

Task Interrupt Request

The following request line can interrupt and send a message to the interactive task if the
task has been designed to receive this input:

$I message
The message is optional. A S$I entry interrupts the task without sending a message.
To be able to process the message interrupt, the program must include the following:

e A call to enable interactive message interrupt processing (a Q5ENAMI call with the
TERMINAL parameter specified).

) The message interrupt subroutine specified on the QSENAMI call. The subroutine can
contain one or more Q5GETMCR calls to receive $I input messages and one or more
Q5SNDMCR calls to send messages to the terminal. (The interrupt routine usually
reads and/or sets variables in a common block to monitor or alter the execution of
the main program.) It must contain a Q5RFI call to end interrupt processing.

After you start a task that uses a message interrupt subroutine, a message can be sent at
any time to the interrupt subroutine using a $I interactive request line.

A $I request line interrupts the task. The current state of the interrupted task is saved,
and the interrupt routine specified on the Q5ENAMI call is entered. The interrupt routine
can get the $I message by calling Q5GETMCR. Control returns to the task from the interrupt
routine when it calls Q5RFI; the task resumes its processing as if no interrupt occurred.

The Q5ENAMI description in chapter 8 contains an example of a message interrupt routine.

60459410 G

Session Termination Request
The following request line terminates the VSOS interactive session.
$BYE

The $BYE request line does not terminate active tasks belonging to the user number; the
tasks execute until they are completed. In a system with an RHF front-end, the $BYE request
line causes control of the terminal to be returned to the front—end system.

The $BYE request line indicates that after all active tasks are completed, the system can
discard the local files created during the interactive session. If the session is
disconnected without a $BYE request line, the local files are not discarded. Logging in
with the same user number reconnects you to the existing JDN.

When interactive access to VSOS is via RHF, it is possible to log out from VSOS without
returning control of the terminal to the front—end system. This is done by typing the

following command:
$HELLO

The $HELLO request line has the same effect as $BYE, except that control of the terminal is
not returned to the front—end system. Instead, a prompt to log in is issued, and a LOGIN
command may be entered. This feature is useful for switching between two or more numbers
with a minimum of effort.

INTERACTIVE EXECUTE LINE

Start execution of a controllee file by logging in to an interactive terminal. Enter an
execute line with the general format shown in figure 3-3.

The execute line must specify the name of the file to be executed. The file can be a local
file, an attached private file, or a public file. The file name becomes the task name.

The execute line can also specify resource limits for the task and a character string to be
passed to the task. The character string can be entered before or after the resource
parameters. If resource parameters are specified, a (blank)/(blank) must precede the
parameters and a second (blank)/(blank) must separate the parameters from the string if it
follows the parameters.

All parameters specified should conform to the conventions used on system-supplied control
statements. All addresses are assumed to be hexadecimal values; any other number is assumed
to be a decimal value unless preceded by #.

Many VSOS utilities are case sensitive for
input or command lines. If case conversion
is not being done by VSOS, you will have to
enter data in uppercase where required.

60459410 G 3-10.1/3-10.2

taskname / TL=t ,PRIORITY=p,WS=w,LP=1p / string

or

taskname string / TL=t,PRIORITY=p,WS=w,LP=1p

taskname

string

Name of task to be placed into execution (one through eight
letters or digits).

Optional character string to be passed to the task. The format of
the character string depends on the coding of the task. The
string is delimited by blanks. The delimiting blanks are not
passed to the task.

Optional Resource Parameters

TL-t

PRIORITY=p

Task time limit in system secondst (decimal integer between 1 and
599940) .

If TL=t is omitted, the task time limit is determined by an
installation parameter value (release value, 60).

Task priority, 1 (lowest) to 15 (highest). 1I1f the specified
priority exceeds the maximum priority specified by the
installation for interactive tasks, the task priority is set equal
to the maximum priority.

If PRIORITY=p is omitted, the job priority is the
installation—specified default priority for interactive tasks
(release value, 14).

Maximum working set size in blocks (decimal integer).

Specifying WS=* notifies the system that the task requires all
allocatable memory (a machine size task). If the site does not
allow an interactive task to use all allocatable memory, the task
is not started.

If WS=w is omitted, the maximum working set size for the task is
the maximum working set size for interactive tasks.

fa system second is one million STUs. 1If desired, an installation can substitute
SBUs for system seconds as the time limit unit. The calculation of an STU or an
SBU is described in volume 2 of this manual.

60459410 J

Figure 3-3. Interactive Execute Line Format (Sheet 1 of 2)

3-11

NOTE
-Use the WS parameter only for the following tasks:

® A machine size task requiring all
allocatable memory (specify WS=%*)

® A task known to execute efficiently with a

maximum working set size for interactive
tasks

Misuse of the parameter could result in suspension
of the task to prevent system performance
degradation. The system automatically resumes the
task when system resources are available.

LP=1p Maximum number of large pages that can be assigned to the task

(decimal integer). If the specified limit exceeds the maximum

limit specified by the installation for interactive tasks, the
task is not started.

If the large page limit, when multiplied by 128, exceeds the
working set size limit, the task is aborted.

If LP=1p is omitted, the large page limit is zero.

Figure 3-3. Interactive Execute Line Format (Sheet 2 of 2)

TASK DATA INPUT

Tasks can be programmed to accept input from a file connected to a terminal. Use of a

connected file is described in chapter 2 of this manual under Connected Interactive Terminal
Files.

DYNAMIC AND STATIC EXECUTION

A controllee may execute statically or dynamically. A controllee executed statically has
all externals loaded at load time. The controllee can be loaded for dynamic execution.
Dynamic execution makes use of a linker utility that satisfies externals on a dynamic basis
when the controllee is executed. The linker utility loads dynamic modules and utilities
from a user dynamic or the system shared library (SHRLIB). Dynamic utilities are system
utilities that do not have any SYSLIB modules on their controllee files. These SYSLIB

modules are called dynamically during execution. All system utilities are dynamic except
the following:

DEBUG

CTX
META

60459410 F

e

The SHRLIB allows both batch and interactive users to share the same physical pages in
virtual memory. The system sets aside enough physical pages to satisfy the working set of
SHRLIB. The SHRLIB is a file that is read or partially read during system initialization
into the pages set aside for the shared library region of memory. Those pages are
unavailable for other use.

The shared pages contain directories, a dynamic linker, and a shared SYSLIB that contains
dynamic modules and, optionally, shared utilities.

The only shared utilities are BATCHPRO and FTN200. During execution of a controllee, if a
controllee faults for a page of the SHRLIB that is not in memory, the system reads in the
page for the controllee to use.

For more information on dynamic execution, refer to the LOAD utility in chapter 4 of this
manual.

60459410 G 3-13

BATCH JOB

A VSOS batch job is a sequence of tasks the batch processor starts while it executes for a
user number. The sequence of tasks is specified in a batch input file.

BATCH INPUT FILE STRUCTURE

A batch input file comprises one or more groups of records. The first group contains a
sequence of batch execute lines (control statements) specifying the sequence of tasks to be
performed. Each execute line is a separate record.

Subsequent groups in the file can contain input for tasks initiated by execute lines in the
first group. Input could be source program text, program data, or utility directives.

The input groups must be in the order required by the execute line sequence. For example,
suppose the sequence includes the following statements:

FTN200.
LOAD.
GO.

The input groups must include a source program text group as input for the FTN200 task,
followed by a group containing any data required for the GO task. The LOAD task does not
require input from a batch input file group.

Only one execute line can use a group from the batch input file. For example, a source
program text in the batch input file can be used by only one compilation statement in the
job., -

If a RESOURCE statement is included in the job, it must be the first statement after the
USER statement, if specified. SUBMIT or QTFS processes the RESOURCE statement. The USER
statement is always the first control statement after the job statement. The job statement
is the first statement in a VSOS batch job. The job statement must begin with a 1 through 8
alphanumeric character string with the first letter being alphabetic. The job statement
must end with a valid job control statement terminator. SUBMIT/QTIFS removes the job, user,
and RESOURCE (if present) statements from the job file prior to placing it in the input
queue.

BATCH CONTROL STATEMENT
A batch control statement initiates a task within a batch job.
The following is the general format of a batch control statement.

task—name,parameters. comment

Any blanks before the task name are ignored. The task name can be followed by any of the
following separator characters:

(, blank

If the task name and a parameter are separated by more than one blank, only one blank is
passed to the task.

If a parameter (such as the JCS parameter in the MFLINK statement) specifies a character
string, double quotes (") must delimit the string. To include the character " in the
string, two consecutive quotes must be specified. The two " characters are interpreted as
one " character within the string.

3-14 60459410 J

A control statement is normally translated to uppercase characters before being processed. I’
However, if you put character strings within double quotes, this translation is not done.
Thus, you have a way to supply case—sensitive arguments to a task.

A control statement must be terminated by either a right parenthesis or a period. A right
parenthesis or period specified within a character string does not terminate a control
statement. Blanks to the right of the terminator are ignored.

If a terminator does not appear in the line, the line immediately following it is presumed
to be a continuation. (A COMMENT or * control statement cannot be continued.) No special
continuation character exists for a batch control statement. {

Any characters after the terminator are presumed to be a comment. These characters are
copied to the dayfile but are not otherwise processed.

The parameters of a batch control statement must be checked by the task; the batch processor
does not interpret the parameter string.

The batch input file should not contain an execute line that returns it. If the input file
is returned, it is not purged at the end of the job. This causes the job to be resubmitted
to the input queue at each autoload.

JOB SCHEDULING

Each batch input file entered in the system is processed by the input queue manager. It
assigns each batch job a job selection number that determines its position in the input
queue. The job selection number is based on the job priority and on the time the job
entered the system. The batch user can specify a priority on the RESOURCE statement (refer
to chapter 4 in this manual), Jobs with the same priority are positioned in the queue
according to the time they entered the system; older jobs have a higher job selection number.

When an executing job or task has terminated, the input queue manager determines the next
job to give to the CPU scheduler. Starting with the job with the lowest job selection
number, the input queue manager selects the first job in the queue that meets scheduling
constraints. The Q control statement (refer to chapter 4 of this manual) lists the status
of the jobs in the system. A job may wait in the input queue for the following reasons:

o The maximum number of executing jobs for the job category has been reached.

e There are not enough uncommitted tape drives available to satisfy the tape drive
requirement for the job.

e Reservation of the requested maximum working set size would overcommit memory beyond
the allowed overcommitment percentage.

e Adding the job”s time limit to the sum of the time limits of all executing jobs
would exceed the maximum time limit for all jobs.

These conditions are self-correcting; that is, eventually the condition preventing job
execution ends, and the job leaves the input queue. However, other conditions that can hold
a job in the input queue are not self-correcting. In the following four cases, the job
remains in the input queue until the operator enters a command to remove the job.

o The job category for the job is turned off.

. The operator has entered a command to hold the job in the input queue.

60459410 J 3-15

° The number of tapes requested for the job is greater than the number of tape drives
available at any time on the system.

. The job requires tape files, but the operator has turned off tape processing.

In the following three cases, the job does not enter the input queue. The job returns to
the remote host and the dayfile contains the following message:

NO JOB CATEGORY FOUND FOR SPECIFIED LIMITS

Operator commands are ineffective in trying to change the job category limits to prevent the
job from aborting.

e The job’s maximum working set size is greater than the maximum working set size
limit for its job category.

° The job’s large page limit is greater than the maximum large page limit for its job
category.

. The job’s time limit is greater than the maximum job time limit for its job category.

Interactive tasks go directly to the CPU scheduler without processing by the input queue
manager.

JOB PROCESSING

The batch processor processes a job while executing under the user number of the job. It
uses the batch input file as its input. The batch input file is a permanent file under the
submitter’s user number. Its name is derived by padding to eight characters the job name
supplied on the front-end job card, ensuring that the name is unique within the input queue
and different from the input job name. To process a job, the batch processor performs the
following steps:

l. It creates a file named Q5JOBFLE and copies the first group in the batch input file
(the control statements) to it.

2. It creates a file named Q5JRTHRF and copies the last group in the batch input file
to it.

3. It creates a file named INPUT and copies the next group in the batch input file (if
one exists) to it.

4. It creates a file named Q5DAYFLE for the job dayfile (refer to Job Dayfile in this
chapter for more information).

5. It sets the error threshold value at the default value of 4. (The threshold value
can be changed by a TV control statement.)

6. It reads a record from Q5JOBFLE. If it reads the end of the file, it initiates
normal job termination. The batch input file is purged upon completion of the job.

7. It determines whether the statement in the record is for a batch processor
function. If it is, it executes the function and continues job processing at step 5.

3-16 ' 60459410 G

8. If the statement is not for a batch processor function, it searches for the file
having the name specified on the execute line. (Refer to File Search Hierarchy in
chapter 2 of this manual.)

If the search fails to find an executable file with the specified name, the batch
processor aborts the job.

9. If the search finds an executable file with the specified name, the batch processor
starts the task as its controllee, passing to it the parameters on the statement.

10. When the task is completed, the batch processor receives the completion status of
the task. If the task abort flag is set, the batch processor aborts the job.

11. If the task did not set its abort flag, the batch processor compares the return code
returned by the task (its termination value) with the error threshold value for the
job. If the termination value is greater than the threshold value, the batch
processor initiates abnormal job terminationm.

12. If the termination value is not greater than the threshold value and the task
generated an OUTPUT file, the batch processor renames the OUTPUT file as a member of
the print file family for the job. It is named Pnnfamnm. nn is a sequence number
starting with 00, and famnm is the unique family identifier.

13. Returns the current INPUT file if the task terminated normally and the INPUT file
was read by the task. It then creates a new INPUT file and copies the next group in
the batch input file (if one exists) to the new INPUT file.

14, Job processing continues at step 5.

JOB DAYFILE

For each job the batch processor processes, a job dayfile is created. During job
processing, the batch processor, the operator, and the executing tasks record job events,
job status, and comment and error information in the job dayfile.

The batch processor records all operator commands that relate to the job, messages the task
sends to the batch processor, and messages the job or the operator send to the dayfile. The

user can send a message to the job dayfile with a COMMENT control statement or a SIL
Q5SNDMDF call.

The job dayfile is printed at the end of the job output.

JOB TERMINATION

A job terminates when one of the following events occurs.

Event Action
A task sets its abort Job abort is processed, followed by abnormal termination
flag. processing and the job termination procedure.
A task returns a termina- Abnormal job termination is processed, followed by the job
tion value greater than termination procedure.

the job threshold value.

60459410 G 317 |

Event Action

The end of the Q5JOBFLE Job termination procedure is processed.
file is read.

Exit control statement Job termination procedure is processed (refer to the EXIT
is read. control statement description in chapter 4 of this manual).

Job Termination Procedure

The batch processor always performs the following steps to terminate a job, regardless of
why the job terminates.

l. It renames the Q5DAYFLE file so that it is a member of the print file family of the
job. It is named PXXfamnm.

If the input queue manager received the job from CYBER 200 RHF, a final print file
named PYYfamnm is added to the print file family. It contains the RHF routing

information for the file.

2. It processes the print file family of the job for routing to a front-end system, as
described under Print Files in chapter 2 of this manual.

3. It destroys the batch input file.

Job Abort

If the task abort flag is set, the batch processor performs the following steps:

1. It dumps task information (refer to DUMP in chapter 6 of this manual). To receive a
dump, the file being executed must have read access permission.

2. It initiates abnormal job termination.

Abnormal Job Termination
When abnormal job termination is initiated, the batch processor searches for the next EXIT

or PROCEED control statement in the job file. If it finds an EXIT or PROCEED statement, it
continues processing with the statement following that statement.

If the batech processor does not find an EXIT or PROCEED statement, it routes the job output
and terminates the job.

JOB PROCESSING EXAMPLE

Suppose the sequence of information shown in figure 3-4 is an input file for the batch
processor. (The input queue manager has removed and processed the RESOURCE statement.)

3-18 60459410 G

TV, O+'

FTIN200.

LOAD.

Go.

DEFINE,DATAOQUT.

end-of —group delimiter

.

FORTRAN 200 source program

end-of-group delimiter
program data

end-of-file delimiter

Figure 3-4. Example Batch Input File as Read by the Batch Processor

The batch processor begins to process the file by copying the first group of the file
(containing the control statements) to a file named Q5JOBFLE. If the batch job originated
from a remote system or via SUBMIT, the last group in the file is copied to a file named
Q5JRTHRF. The processor then copies the next group (containing a FORTRAN source program) to
a file named INPUT. It also creates a file named Q5DAYFLE and sets the error threshold
value to the default value.

The batch processor reads the first record from Q5JOBFLE., It contains the batch processor
control statement, TV,0+. The batch processor executes the statement, setting the job error
threshold value at zero.

The batch processor then reads the second record from Q5JOBFLE. It is the compiler control
statement FIN200. The batch processor does not recognize the statement as one that it
executes, so it assumes that the statement names a controllee file to be executed. It
passes the parameters of the control statement and the file name to the operating system.

The operating system searches for a controllee file with the name FTN200. 1If the system
finds a controllee file with that name, the batch processor starts execution of the file as
its controllee. :

~ Assuming that the controllee is an FTN200 compiler, the compiler, by default, reads its
input from the INPUT file containing the batch input file group that followed the control
statement group. Assuming that the group is an FIN200 source program, the compiler, by
default, creates the local file BINARY and writes the compiled object code on the file. The
compiler also creates a local file named OUTPUT, on which it writes the FIN200 source
listing.

60459410 F , 3-19 |

Assume that the FIN200 task returns a completion status of 0 (normal termination) to the
batch processor. Because the INPUT file was read by the FIN200 compiler, the batch
processor returns the existing INPUT file and creates a new INPUT file, copying the next
group from the batch input file.

The batch processor changes the name of file OUTPUT to POOfamnm. The name famnm is the
unique. identifier of the family of print files belonging to the job.

The next record the batch processor reads from Q5JOBFLE contains the control statement
"LOAD. The operating system finds the public file LOAD, containing the LOAD utility. It
initiates execution of the file as a controllee of the batch processor.

By default, LOAD reads the BINARY file as its input. It creates a local file named GO, on
which it writes a controllee file. It also creates a local file named OUTPUT, on which it
writes the load map.

LOAD attempts to satisfy external references from the default library SSYSLIB. Remaining
unsatisfied externals are assumed to be dynamic and will be satisfied by the linker when the
GO file is executed.

At the end of LOAD execution, the batch processor again checks the abort flag and compares
the termination value to the error threshold value. LOAD did not read the INPUT file, so
the INPUT file is not returned. LOAD did create an OUTPUT file, so the batch processor
changes the name of the OUTPUT file to POlfamnm.

The next control statement read from Q5JOBFLE is GO. The operating system finds the GO file
as the local controllee file the LOAD created. It executes GO as a controllee of the batch
processore.

At the end of GO execution, the batch processor checks the abort flag and compares the
termination value to the error threshold value. GO read the INPUT file, so the batch
processor returns the INPUT file, but no more input groups exist on the batch input file, so
a new INPUT file is not created. GO changes the name of the OUTPUT file created by GO to
PO2famnm.

The next control statement read is DEFINE,DATAOUT. Execution of the DEFINE utility searches
for a local file named DATAOUT. Assuming that execution of GO created a file named DATAOUT,
DEFINE stores the local file DATAOUT as a permanent file. Therefore, the file DATAOUT
continues to exist after job termination; all other files used by the job are destroyed at
job termination.

Q5JOBFLE contains no more records to be read, so the batch processor terminates the job.
The job dayfile, Q5DAYFLE, created as the job was running, is changed to PXXfamnn. If it
exists, the last-group-file Q5JRTHRF, is renamed PYYfamnn. If the job originated from a

remote system or via SUBMIT, all files in the output-file-family are given to the output
queue as they are renamed.

3-20 ' 60459410 F

REMOTE HOST FACILITY

The remote host facility (RHF) is the set of software that enables communications between
computer systems connected via the loosely coupled network (LCN) hardware. RHF manages the
transfer of control statements and files between systems. It also supports VSOS interactive
access from remote systems. It performs all required character code and logical file
structure conversion.

The RHF software that executes on a CYBER 200 system is called CYBER 200 RHF. The software
includes an application program for each RHF function. These application programs send
control statements to and receive control statements from RHF application programs executing
on other computer systems.

The applications and CYBER 200 RHF control statements executed by the system are described
in this chapter. For a description of the user-executable RHF applications, DUMPF, LOADPF,
MFLINK and MFQUEUE, refer to chapter 4 of this manual.

RHF can send control statements to another system to be executed by the other system. The
control statements are specified as a text string. The text string can be specified as part
of a parameter or as data on a separate file. CYBER 200 RHF takes the control statement
text string from the JCS parameter or from the file specified on the INPUT parameter. For
security reasons, a text string specified on a JCS parameter is not entered in the job
dayfile. The text string is replaced by asterisks.

RHF can transfer copies of queue files, permanent mass storage files, or archived files. A
separate RHF application program manages each file transfer category. The following are the
CYBER 200 RHF applications.

Program Description
Interactive Transfer Manages interactive I/0 transfers.
Facility Server
(ITFS)

Queue File Transfer Manages queue file transfers.

Facility (QTF, QTFS)

Permanent File Manages requests for permanent file operations, including
Transfer Facility permanent file transfers.

(PTF, PTFS)

Dump/Load Facility Manages dumping and reloading of CYBER 200 archived files.
(DLF)

The remotéfoperator interface is described in the VSOS 2 Operator”s Guide.

INTERACTIVE ACCESS

To log in to the CYBER 200 system via RHF, perform the following steps:
1. Log in to the remote system.

2.. Notify RHF that you want to log in to the CYBER 200 system, as described in the RHF
documentation for the remote system.

3. Log in to VSOS as described earlier in this chapter.
After login, interactive access via RHF is as described earlier in this chapter.

60459410 F 3-21

QUEUE FILE TRANSFERS

The QTF and QIFS applications manage queue file transfers for VSOS. QTFS receives batch
input queue files with disposition codes of IN and IX and gives them to the input queue
manager as CYBER 200 batch jobs. QTFS also receives output queue files with disposition
codes of LP, CP, P8, PB, or SP, and gives them to user 6 for processing by QIF. QTFS will
also process the following routing directive if received with the queue file:

ROUTE,ST=1id.

1lid . The logical id of the remote host to receive any output associated with the
queue file.

The remote system”s MFQUEUE command is used to send the routing directive with the queue
file. For example, if the ROUTE directive is received with an input queue file, the output
of the batch job is sent to the LID specified in the ROUTE directive. If the ROUTE
directive is received with an output queue file, the output queue file is given to user 6
and QTF sends the output queue file to the LID specified in the ROUTE directive.

If QTFS receives an output queue file without any routing directives, QTFS gives the output
to user 6 and QTF sends the output to a default remote host. Also, if QIFS receives an
input queue file with disposition of IX and no routing directives are received with it, the
output generated by the batch job is sent to a default remote host. The default remote host
is designated initially by an LID specified by the AUTOCON variable OLID (the released value
is NOS; on VSOS it is MEl). However, the remote host may be changed when the system is
autoloaded or by the OLID operator command during system operation.

The QTF application sends queue files to other remote hosts sending information with the
queue file designating the file”s disposition.

CYBER 200 JOB SUBMISSION

QIFS receives a batch input file for processing as a CYBER 200 job. The job statement is
the first statement in the file and is used by the remote system. QIFS processes the second
statement in the file, the USER statement. If a RESOURCE statement follows the USER
statement, QTFS processes it also. QTFS then strips the first two statements from the file
and the RESOURCE statement (if present) and gives the file to the VSOS input queue manager.

The USER control statement (refer to figure 3-5) identifies the CYBER 200 user number to
which the CYBER 200 job belongs, the account identifier to which its resource usage is
charged (optional), the password for the user number, and the security level of the job.

The RESOURCE control statement for the job must immediately follow the USER statement.
The logical structure of a job file sent to the CYBER 200 input queue must be indicated by
ASCII separator characters. The job file may be transferred to the CYBER 200 only in

character mode (DD=C8, C6, or the default, which causes the file to be handled in the native
character mode of both the sending and receiving systems).

3=22 60459410 J

USER,USER=userno,ACCOUNT=account ,PASSWORD=password, SECURITY=n,

USER=userno CYBER 200 user number (one to six decimal digits). This
parameter is required.

ACCOUNT=account CYBER 200 account identifier (one to eight ASCII
characters)., This parameter is optional,

PASSWORD=password User password (one to eight ASCII characters). Site
personnel determine during system installation whether
user password entry is required or optional.

SECURITY=n Security level for the job (1 to 8). If SECURITY=n is
omitted, security level 1 is assumed.

Figure 3-5. USER Control Statement Format

60459410 H 3-22.1/3-22.2 I

OUTPUT FILE ROUTING

Because a CYBER 200 system has no output devices, RHF must transfer all output files to a
remote system., The QTF application performs all output file routing.

As described under Job Processing earlier in this chapter, the final file in an
output-file-family contains the output specifications for the files. The files in the
family, including the job dayfile, are concatenated at job termination into a single print
file. When the RHF software on the remote system receives the file, it interprets the
output specifications to determine the appropriate output queue for the file.

The records of the routed file are terminated by ASCII unit separator characters (#1F). RHF
adds these record termination characters, if necessary, as part of the output file.

EXPLICIT FILE ROUTING

By default, QTF routes an output file to the remote system from which the job that produces
the output file originated. However, an output file can be explicitly routed to another
system. To do so, include an MFQUEUE control statement (refer to chapter 4 of this manual)
in the job that produces the file.

60459410 F 3-23

RHF PERMANENT FILE REQUESTS

RHF permanent file requests are handled by a sequence of control statements sent to or from
a remote operating system via RHF. The PTF and PTFS applications manage RHF requests for
permanent file operations. PTFS receives requests from the remote system for operations on
permanent files. PIF sends requests to the remote system, using the MFLINK control
statement, for operations on permanent files.

PERMANENT FILE REQUESTS

PTFS receives requests to define, copy, purge, and give CYBER 200 permanent files. The
following VSOS control statements are acceptable to PTFS:

ATTACH
AUDIT
CHARGE
DEFINE
GIVE
MFGIVE
MFTAKE
PATTACH
PDETACH
PERMIT
PURGE

Q (only if IP_SCF = 1)
RETURN
SWITCH
USER

The sequence of CYBER 200 control statements that compose a request must adhere to the
following rules:

e It must begin with a USER statement (refer to figure 3-5) specifying the CYBER 200
user number to which the referenced files belong.

° To copy a permanent file, the sequence must include the statements needed to access
the CYBER 200 file and either an MFGIVE or an MFTAKE control statement (refer to
figures 3-6 and 3-7). An MFGIVE statement copies a CYBER 200 file to a remote
file. An MFTAKE statement copies a remote file to the CYBER 200 file.

° Only one MFGIVE or MFTAKE control statement can be specified per request.

° You may omit the ST=1id parameter and the USER card in the JCS parameter string for
second and subsequent MFLINKs in the same job or interactive session on the front
end. In batch jobs, this allows multiple files on one connection for successive
MFLINKs.

If you use multiple copies of PTFS referencing the same permanent file, you may experience
delays on the ATTACH. The default for ATTACH is to wait until access is granted to the
file. Default access permissions are RX (read and execute). Several jobs may access the
file simultaneously to read it, but if one PTFS specifies write access permission on the
ATTACH statement, on all subsequent attempts to ATTACH the file with any access, the job
waits until the file becomes available (unless WAIT=NO was also specified). If the wait
interval becomes too long, MFLINK on the remote system may time out. See chapter 4 of this
manual for additional information on the ATTACH statement. If the remote system sends
successive requests on a single MFLINK comnection (MFLINK session), PTFS allows the requests
and completes the session.

3-24 60459410 G

MFGIVE, 1fn.

1fn Name of the CYBER 200 file to be transmitted (one to eight
alphanumeric characters, beginning with a letter). The statements
required for accessing a permanent file (ATTACH or PATTACH) must be
executed before the MFGIVE statement.

Figure 3-6. MFGIVE Control Statement Format

MFTAKE, 1fn.

1fn Name of the CYBER 200 file that receives the file copy. To make
the file permanent, the DEFINE statement must be executed before or
after the MFTAKE statement.

Figure 3-7. MFTAKE Control Statement Format

PERMANENT FILE AUDIT REQUEST

The control statement sequence transferred by an MFLINK statement can include an AUDIT
statement. To transfer the AUDIT listing to the remote host, the AUDIT statement must
specify a listing file and an MFGIVE statement specifying that the listing file must follow
the AUDIT statement. The AUDIT statement cannot specify the IPR listing file option. The
listing file contains ASCII data with ANSI carriage control characters.

The AUDIT statement cannot exceed 2000
characters.

The statements required for accessing a permanent file (ATTACH or PATTACH) must be executed
before the MFTAKE statement if the file is permanent prior to the MFTAKE. To determine how
to send a permanent file request to a CYBER 200 system, refer to the RHF documentation of

* the system that is to send the request.

DIRECT ACCESS FILE TRANSFERS

RHF can transfer files with random access structure. However, the ability to access the
file records randomly is maintained only if the file that receives the transferred file copy
is defined with a compatible random access structure.

VS0S supports random record access with the direct access file structure described in
chapter 2 of this manual. When RHF transfers a copy of a VSOS direct access file to a
remote system, random access of the file records on the remote system is possible only if
the file that receives the file copy is defined with a compatible random access structure.

Similarly, when a random access file is transferred to a CYBER 200 system, VSOS can access

the file records randomly only if the receiving file was defined with direct access file
structure.

60459410 F 3-25

For example, suppose a file named IBM.DA.FILE is to be transferred from an IBM system to a
CYBER 200 system., The file has fixed-length 80—character records, compatible with a valid
VSOS direct access file structure. Assuming that the file records are to be accessed
randomly on the VSOS system, a VSOS job should use the following statements to define the
receiving file and transfer the file copy.

DEFINE,A,RLMAX=80,SFO=D.
MFLINK,A,ST=IBM,DD=C8 ,J CS="GET ,DSN=IBM.DA.FILE".

Table 3-2 lists the logical structure conversions that can be specified by the data format

declaration parameter (DD=) on the MFLINK control statement.

manual for more information on MFLINK.

Refer to chapter 4 in this

Table 3-2. Logical Structure Conversion
Permanent
File Transfer
DD=dd
Parameter RHF Conversion SIL Format

uu No logical structure conversion. RHF transfers All SIL record types
the file as a string of bits terminated by an can be read/written.
end~of~-information protocol parameter.

Us Logical structure indicated by file structure Only control word (W)
control words. format can be

read/written.

c8 Logical structure indicated by ASCII unit All SIL record types
separator, group separator, and file separator except U format can be
characters. The file contains character data read/written,
from a character set with more than 64 character
codes.

(¢ The file contains character data from a character | All SIL record types
set with 64 or fewer character codes. Logical except U format can be
structure is indicated by ASCII unit separators, read/written,
group separators, and file separator characters.

C6 and C8 are treated identically by VSOS but may
be treated differently by the remote host.

omitted The file is treated by both the sending and the All SIL record types
receiving host as being in the native character except U format can be
set of that host. Logical structure is indicated read/written.
by ASCII unit separators, group separators, and
file separator characters.

® 3-26 60459410

FILE ARCHIVING

File archiving is the process of copying permanent files to backup storage and reloading the
backup copies if needed. File archiving preserves a backup copy in the event that the
original copy is inadvertently destroyed., The CYBER 200 file archiving statements, DUMPF
and LOADPF, are described in chapter 4 of this manual.

Using the RHF application DLF, a CYBER 200 system can archive its permanent files on a
remote computer system connected via the LCN. Enter a DUMPF or LOADPF statement as
described in chapter 4. The DLF application interprets the statement. Tt uses the
following parameter specifications to communicate with the remote system.

Parameter Purpose
ST Specifies the remote system with which DLF communicates.
ST Specifies the set identifier on the remote system to which the files are

dumped or from which files are loaded.
JCS or Specifies the source of the text string sent to the RHF software execut-

INPUT ing on the remote system. The text string contains the job control
language required to execute the archiving request on the remote system.

60459410 E 3-27

TASK TERMINATION

Control task termination processing by enabling either or both of the following in the task.
° User reprieve processing
e Abnormal termination control (ATC) processing

User reprieve processing is performed when a task terminates normally or abnormally. ATC
processing is performed only when the task terminates abnormally.

USER REPRIEVE
Enable user reprieve processing with a Q5REPREV call within the task.

The Q5REPREV call specifies the entry point given control when the task terminates. The
entry point must be declared external within the task.

The user—defined reprieve subroutine can save information from the task whether the task
executes successfully or not.

The reprieve subroutine must return control
to the system with a Q5TERM call.

If the task fails for a reason other than time limit, the reprieve routine is given the
processing time remaining for the task. If the task fails because of a time limit, the
reprieve routine is given an additional one-half system second.

ABNORMAL TERMINATION CONTROL

The ATC feature allows special processing to be set up if the system fails during program
execution. The system failure may or may not be caused by the user’s program. (The errors
are listed in appendix B.) When the failure occurs, normal processing is interrupted, and
all current information about the program is saved. Processing of the abnormal condition is
done in interrupt mode.

ATC does not process computation errors; to process those errors, the task can call the

FORTRAN Library Data Flag Branch Manager routines described in the CYBER 200 FORTRAN
Reference Manual.

3-28 60459410 G

ATC Interrupt Subroutine

To set up interrupt processing, write an interrupt subroutine to perform the error
processing that the program requires. For example, the interrupt subroutine can test the
error code to determine whether the program can continue. It can also print the contents of
the program variables at the time the error occurred to assist in analysis of the error.

The first line of the subroutine must have the format shown in figure 3-8. The system error
codes passed to the subroutine are listed in appendix B, table B-3.

SUBROUTINE subname(errcode,pcounter,invis,regs)
or

ENTRY subname(errcode,pcounter,invis,regs)

errcode System error code (refer to table B-3).

pcounter Virtual bit address at which the system detected the error
(contents of program counter).

invis Invisible package of interrupted task (40-word array).

regs Register file of interrupted task (256-word array).

Figure 3-8, Interrupt Subroutine Header

You can include a Q5RFI'call in the interrupt routine to return control to or to abort the

interrupted task. If you omit the Q5RFI call, the task is aborted when the interrupt
subroutine terminates.

These system messages can cause an interrupt deadlock with ATC, preventing completion of the
task. Explicit I/0 requests issued as a result of a FORTRAN statement or an SIL call within
the ATC interrupt subroutine are processed correctly.

Terminal interrupts are ignored within the ATC interrupt subroutine even if the subroutine
contains an SIL call or system message to process terminal interrupts. If the ATC interrupt
subroutine returns control to the interrupted task, the task can then process terminal
interrupts, although it might not process correctly the terminal interrupts received during
ATC processing.

60459410 H 3-29

Enabling and Disabling ATC

Insert a Q5ENATI call in the program where abnormal termination control is to begin. On the
call, specify the interrupt routine to be used. To change the interrupt subroutine used,
i1ssue another Q5ENATI call, naming another subroutine.

Insert a Q5DISATI call in the program where abnormal termination control is to end.
Abnormal termination controi does not function under any of the following conditiomns:
° The program is already in interrupt mode.
e The program has exceeded its error recovery limit.

° The program encounters a second time limit error.

Interrupt Mode Disable

Abnormal termination control does not function if the program is already in interrupt mode.
The program is in interrupt mode when it 1s processing a terminal interrupt, when it is
performing certain I/0 functions, or when it is in the abnormal termination control
interrupt subroutine. If a fatal error occurs while the program is in interrupt mode, the
program aborts without abnormal termination control processing.

Error Recovery Limit Disable

Abnormal termination control does not function if the program has exceeded its error
recovery limit. Specify an error recovery limit (1 to 256 recoveries) on the Q5ENATI call.
If an error recovery limit is not specified, the default limit of 25 recoveries is used.

Second Time ILimit Disable

Abnormal termination control does not function when the program encounters a second time
limit error. After encountering the first time limit, the program is given additional time
for interrupt subroutine processing. (The amount of time is set by an installation
parameter; it is usually 500,000 STUs.)

3-30 : ’ ' 60459410 G

RESOURCE ALLOCATION

The maximum of system resources allowed for a job or task depends on the job category to
which the job belongs.

A job category is identified by a one- to eight-character name. The installation defines
the following limitations for jobs belonging to a job category.

° Maximum number of jobs belonging to the category that can concurrently execute
° The following limits for each job in the category:

- Maximum and default priority

- Maximum and default time limit

- Maximum working set size

- Large page limit

For further details on resource limitations imposed at security-sensitive sites, refer to
chapter 7 of the Installation Handbook.

BATCH RESOURCE LIMITS

The RESOURCE control statement (refer to chapter 4 of this manual) allows specification of
system resources to be used by the job. If the RESOURCE control statement is not included,
the job assumes the limits specified by the JDEFAULT category.

If the RESOURCE control statement is included, the following process is used to determine
resource allocation.

1. The input queue manager collects all limits supplied.

2. If the JCAT=jcat parameter is supplied, that job category is selected. The input
queue manager then performs the normal limits validation for that job category.

3. If the JCAT=jcat parameter is not supplied, the input queue manager selects the job
category automatically, comparing the limits provided on the RESOURCE control
statement with the known limits for each job category valid for the user. All users
are validated automatically for the JDEFAULT category. The category selected is
based on the following criteria.

a. The time limit (TL), large page limit (LP), and working set size (WS)
specified on the RESOURCE control statement are compared to all job category
limits for these parameters. A list of eligible job categories is
selected. If none of these parameters are specified, all job categories are
selected.

b. The priority (PR) and working set size (WS) parameters are then compared to
all selected job categories. If both are specified, the category with the
closest fit to at least those limits is selected. If PR only is specified,
the category with the minimum working set size and the closest fit to at
least the specified priority is selected. If WS only is specified, the job
category with the maximum priority that has the closest fit to at least the
specified working set size is selected.

c. If neither PR nor WS is specified, the job category with the maximum
priority is selected.

60459410 J 3-31

INTERACTIVE RESOURCE LIMITS

Within an interactive session, resource allocation is independent for each task requested.
The task resource limits can be specified on the interactive execute line (refer to
figure 3-2).

An interactive task is not started if a memory or time limit requested on its execute line
exceeds the limit for the INTRACTV job category. If its requested priority exceeds the
maximum priority for the INTRACTV job category, its priority is set at the maximum.
Otherwise, its requested limits become the initial task limits.

A Q5SETLP call can change a large page limit within a task as long as the new limit does not
exceed the initial task limit.

—

3-32 60459410 G Q

ACCOUNTING

One of the user number validations is the number of system seconds available for use by
tasks belonging to the user number. A system second is one million system time units (STUs)
or one million system billing units (SBUs). The site determines whether STUs or SBUs are
used and the weighting factors used in the STU or SBU algorithm. For more information,
refer to Accounting in volume 2 of this manual.

As tasks belonging to the user number execute, the system decrements the number of system
seconds available to the user number. The system sends an error message to the job dayfile
or to the interactive terminal when too few system seconds are available to perform the
requested task. For a new allowance of system seconds for the user number, ask site
personnel.

Statistics on jobs and tasks executed are stored in a cumulative accounting buffer and in
the accounting file. The site can use the accumulated statistics to charge the user for
resources used. For more information about accounting statistics, refer to Accounting in
volume 2 of this manual.

Send accumulated resource usage information to the job dayfile by executing a SUMMARY
statement within the job.

60459410 G 3-33 |

The control statements described in this chapter perform job processing functions or
initiate execution of system—-supplied utility programs.

CONTROL STATEMENTS

statements described in the chapter.

Table 4-1 lists the control

A control statement can be entered as either a batch execute line or an interactive execute

line. The batch and interactive execute line formats are described in chapter 3 of this

manual.
Table 4-1. Control Statements (Sheet 1 of 4)
Batch Job Only
BEGIN Insert a procedure in the control statement sequence.
COMMENT Send a message to the job dayfile.
DAYFILE Copy the job dayfile.
ELSE Terminate/start control statement processing.
ENDIF Start control statement processing.
EXIT Set abnormal termination path.
IF Test a condition to process or skip control statements.
NORERUN Set norerun status.
PROC Identify a procedure and its formal parameters.
RERUN Set rerun status.
RESOURCE Set job limits.
SET Change job characteristics.,
SUMMARY Provide resource usage information.
v Set threshold value.
USER Validate user access.

60459410 H

Table 4-1, Control Statements (Sheet 2 of 4)

System Access

LIMITS List user”s validation controls and limitations.
PASSWORD Change the user password.
USER Identify the user number to which a batch input file belongs.
CHARGE Assign account and project numbers.
File Management
COMPARE Compare the contents of two files.
COPY Copy, byte by byte, the contents pf one file to another.
COPYL Copy logical partitions from one file to another.
FILES List file information.
GIVE Change file ownership.
LISTAC List access permission sets,
PERMIT Change file access permissions.
Q List job status.
REQUEST Create a local file, a tape file, or a file connected to a terminal.
RETURN End file access by the job or interactive session.
SWITCH Change file characteristics.
Queue File Management
DIVERT Change the destination of an output file.
DROP Remove a job from a queue.
MFQUEUE Submit a file to a queue on a remote system.
SUBMIT Submit a job to the input queue on the CYBER 200.
4-2 60459410

Table 4-1. Control Statements (Sheet 3 of 4)

Permanent File Management
ATTACH Attach perﬁanent files.
AUDIT List permanent file information.
DEFINE Create a permanent file, or make an existing local file permanent.
DMAP Provide information on the location of permanent file segments,
DUMPF Copy permanent files to archive storage.
LOADPF Reload files from archive storage.
MFLINK Transfer a permanent file between mainframes.
PURGE Destroy permanent files.
Pool File Management
PACCESS Grant pool access.
PATTACH Attach a pool.
PCREATE Create a pool.
PDELETE Remove pool access.
PDESTROY Destroy a pool,
PDETACH Detach an attached pool.
PFILES List pool information.
Tape File Management
BLANK Blank label a tape volume. (For more information, refer to the VSOS
Operator Guide.)
LABEL Supply label information for a tape file.
REWIND Rewind a tape file.
SKIP Position a tape file.
60459410 H 4=2,1/4-2,2

Table 4-1. Control Statements (Sheet 4 of 4)

Code File Management
LOAD Create a controllee file.
OLE Edit or create an object library.
SLGEN Generate a shared library.
TASKATT Alter a controllee attribute.
Debugging
DEBUG Debug a program (refer to chapter 6).
DUMP Dump a drop file (refer to chapter 6).
LOOK Dump virtual space (refer to chapter 6).
File Update
UPDATE Maintain a card image file (refer to chapter 5).
Privileged User Only
EDITPUB Add or destroy a public file.
60459410 H 4-3

CONTROL STATEMENT PARAMETER FORMAT

Control statement parameters use the following formats:
° keyword
e keyword=value
e value
The format used for a parameter is shown in the control statement format. Parameters that

use a keyword can appear in any order within the control statement. A parameter specified

only as a value must appear in its designated position, as shown in the control statement
format.

Control statements recognize abbreviated keywords for many parameters. For example, the
keyword DEVICE can be entered as DEVICE, DEVIC, DEVI, or DEV, The fewest characters
required for keyword recognition are underlined in the parameter description.

A parameter value is passed to the utility as specified in the control statement. In
general, value interpretation follows these conventions:

® Addresses are interpreted as hexadecimal constants unless indicated otherwise in the
parameter description.

e Other digit strings are interpreted as decimal numbers unless a # character precedes
the string. The # character indicates that the number is in hexadecimal
representation, Either decimal or hexadecimal representation is allowed unless
indicated otherwise in the parameter description.

Any errors in the parameters submitted are reported to the dayfile unless otherwise noted.

Standard control statement parameter processing is performed by the Q7KEYWRD routine
described in volume 2 of this manual,

4-4 60459410 F

INTERACTIVE CONTROL STATEMENT EXECUTION

All control statements described in this chapter, except the batch processor control
statements and the RESOURCE statement, can be used in an interactive terminal session. Any
differences between interactive and batch use are described in the control statement
description.

The syntax of a control statement entered at an interactive terminal can have either of the
following formats:

. A control statement with only an optional right parenthesis or period terminator
[A control statement with one or more parameters on one or more lines

When a control statement is entered without parameters, the task responds with a prompting
message, such as PLEASE SPECIFY PARAMETERS. The prompting message might also include more
specific information about appropriate entries, such as a message SPECIFY: FILENAME,
LENGTH, OPTIONS. In response, enter a parameter or a string of parameters separated by
commas. Each entry must be terminated by a carriage return.

When the control statement is entered on a single line, the task name must be followed by a
blank, a comma, or a left parenthesis. Other parameters can be separated by blanks or
commas also. Depending on the utility, some parameters have subfields separated by the
character slash. Any blank immediately adjacent to a parenthesis, comma, slash, or period
is ignored.

Except for the LOAD control statement (described in this chapter), a control statement can
be entered on more than one line. No prompting occurs between continued lines. To continue
a control statement entered interactively, the character & must be the last character before
the carriage return. Thus the next entry line is a continuation of the string of characters
in the previous entry. Several lines can be concatenc:ed, up to a limit of 4096

characters. If the character & is not entered, the next line is a new statement. The
following entries are equivalent.

RETURN FILEl,FILE2,FILE3,FILE4

RETURN FILEl,FILE2,FI&
LE3,FILE4

Any error in the parameters submitted and any errors encountered during execution of the

utility are reported at the terminal. Almost all control statements notify you of
successful execution.

60459410 F 4-5

CONTROL STATEMENT MANAGEMENT

You can direct the batch processor to process or skip a control statement through a control
statement variable in the IF, ELSE, or ENDIF control statements. This section describes
that procedure,

CONTROL STATEMENT VARIABLES

Use these variables in SET and IF statements, The SET control statement is used to place a
value in a variable; refer to SET - Change Job Characteristics later in this chapter. The
IF statement, described later in this chapter under IF Control Statement, is used to test
control statement variable values.

The names of the global control statement variables follow:
Rn Identifies a global variable that may be set or altered by the SET statement and

referenced in an IF statement. n is an integer from O to 9. There is one set
of these variables that exists across all control statement procedures.

Y Returns the current threshold value; this variable cannot be set by the SET
statement.,
RC Returns the last return code returned from a controllee; this variable cannot be

set by the SET statement.
Following are some examples of using control statement variables:

SET (RO=25)

COMMENT. VARIABLE RO NOW CONTAINS DECIMAL 25
SET(R2=#10)

COMMENT. VARIABLE R2 NOW CONTAINS HEX 10

SET(R3=TV)

COMMENT. VARIABLE R3 NOW CONTAINS THE THRESHOLD VALUE
SET(R1=R2)

COMMENT. VARIABLE Rl NOW CONTAINS HEX 10

SET(RO=+25)

COMMENT. VARIABLE RO NOW CONTAINS DECIMAL 50
SET(R0=-10)

COMMENT. VARIABLE RO NOW CONTAINS DECIMAL 40

SET (R7="ABC")

COMMENT. VARIABLE R7 NOW CONTAINS THE STRING "ABCxxxxx".

IF,R7="ABC".

COMMENT. THIS COMMENT STATEMENT WILL BE PROCESSED
ELSE.

COMMENT. THIS COMMENT STATEMENT WILL NOT BE PROCESSED
ENDIF.

IF,RI>RO0.

COMMENT. THIS COMMENT STATEMENT WILL NOT BE PROCESSED
ELSE.

COMMENT. THIS COMMENT STATEMENT WILL BE PROCESSED
ENDIF.

® 4-6 60459410 H

CONDITIONAL CONTROL STATEMENTS

The statements described in this section are used to test conditions; the results of the
test then cause the control statements to be processed or skipped.

IF Control Statement
IF tests control statement -onditions to see if they are true or false.
If a condition that an IF c. "rol statement tests is true, the control statements that

follow the condition are processed until a matching ELSE or ENDIF statement is found. The
statements between the matchiny ELSE and ENDIF are skipped.

If the condition is false, the control statements that follow are skipped until a matching
ELSE or ENDIF statement is found.

The IF statement format is shown in figure 4-1. A left parenthesis can replace the first
comma in the format and a right parenthesis can replace the terminating period.

IF,condition(,label].

condition The condition to be tested for a true or false value.
The condition has the following format:

valuel op value2

valuel and value2 can be one of the values defined in
the SET statement for assignment to a control
statement variable.

op can be one of the following operators:

= Tests for 64-bit equality of valuel and value2,
The operation is true if they are equal.

> value2 is subtracted from valuel. If the
result is greater than zero, the operation is
true.

label Optional label used to match with the ELSE and/or
ENDIF statement. label can be a maximum of eight
alphanumeric characters.

Figure 4-1., 1IF Control Statement Format

60459410 H 4-6.1

ELSE Control Statement

ELSE terminates true condition processing or starts false condition processing. For a true
condition, ELSE causes statements to be skipped until the matching ENDIF is found. For a
false condition, ELSE stops the statement skipping.

The ELSE statement format is shown in figure 4-1.1. A left parenthesis can replace the
first comma and a right parenthesis can replace the terminating period.

ELSE[,label].

label Optional label used to match the IF and ENDIF statements.,

Figure 4-1.1. ELSE Control Statement Format

ENDIF Control Statement
ENDIF terminates the skipping of control statements,

The ENDIF statement format is shown in figure 4-1.2. A left parenthesis can replace the
first comma and a right parenthesis can replace the terminating period.

ENDIF([,label].

label Optional label used to match the IF and ELSE statements.

Figure 4-1.,2, ENDIF Control Statement Format

CONDITIONAL STATEMENT PROCESSING

The IF statement causes the batch job processor to evaluate the condition. The result of
the condition and label are then saved.

If the condition is false, the batch job processor scans for an ELSE or ENDIF whose label
matches the saved label. When the ELSE or ENDIF is found, the batch job processor clears
the condition and label and starts processing control statements again.

If the condition is true, the batch job processor clears the condition and label and starts
processing control statements.

If an ELSE is found when the condition and label are cleared, the batch job processor skips
control statements until an ENDIF is found that matches the ELSE.

® 4-6.2 60459410 H

CONTROL STATEMENT PROCEDURES

A control statement procedure is a sequence of control statements in a mass storage file.
The first statement in the file must be a PROC statement. To begin execution of a
procedure, a job must process a BEGIN statement.

PROC STATEMENT

The PROC control statement is the first statement in a procedure file. It identifies the
name of the procedure and any formal parameters used in the procedure statements,

The PROC control statement format is shown in figure 4-1.3, A left parenthesis can replace
the first comma in the format, and a right parenthesis can replace the terminating period.
The parameters must appear in the order shown.

PROC,pname,fp},fpo, e ,fpp.

pname Name of the procedure (one to eight letters or digits, beginning
with a letter). This parameter is required.

fpi Optional list of up to 16 formal parameters separated by
commas. Each formal parameter is a string of one to eight
characters; it can contain letters, digits, and the underline
character (). Refer to Formal Parameter Substitution in this
chapter for more information.

Figure 4-1.3. PROC Control Statement Format

BEGIN STATEMENT

The BEGIN control statement initiates execution of a control statement procedure. A BEGIN
statement can appear in the control statement sequence of a batch input file or in a control
statement procedure; it cannot be entered at an interactive terminal.

A site might have installed the BEGIN
utility from TOOLPL which can be used
interactively.

A permanent file containing a procedure must be attached before a BEGIN statement can
initiate its execution.

The BEGIN statement format is shown in figure 4-2. A left parenthesis can replace the first
.comma in the format, and a right parenthesis can replace.the terminating period. The
parameters must appear in the order shown.

60459410 J 4=6.3/4-6.4 ®

BEGIN, pname,pfile,p|,P2,eeesPne

pname Name of the procedure to be executed, as defined on the PROC statement
in the procedure (one to eight letters or digits, beginning with a
letter)., If pname is omitted, the procedure on the file specified by
pfile is executed.

pfile Name of the mass storage file containing the procedure (one to eight
letters or digits, beginning with a letter). If pfile is omitted, the
procedure file name is assumed to be PROCFIL.

Pi Optional list of up to 16 substitution values separated by commas. A
substitution value is a string of one to eight characters; it can
contain letters, numbers, and the underline character (). Other
characters can be included if the string is enclosed in double quote
characters (").

The editing characters ", @, and N are removed from the substitution

value unless the user specifies two consecutive characters for each

character that is to remain. For example, "'""@@""" indicates that '"@"
is the substitution value.

The formats used to specify substitution values are described under
Matching Substitution Values to Formal Parameters in this chapter. The
effect of omitting substitution values is described under Omitting
Substitution Values.

Figure 4-2, BEGIN Control Statement Format

CONTROL STATEMENT EXECUTION SEQUENCE

The BEGIN statement changes the control statement execution sequence. After the batch
processor executes a BEGIN statement, it executes as the next statement in the control
statement sequence the first control statement in the procedure specified on the BEGIN
statement.

For example, the following is the control statement group in a batch input file.

BEGIN,MYPROC,MYFILE.
GO.

The following are the statements on file MYFILE.

PROC ,MYPROC,
FORTRAN.
LOAD.

The first statement executed is the BEGIN statement, which starts execution of the
procedure.

Each statement in the procedure is executed in sequence. If no errors occur during
procedure execution, the batch processor returns to the BEGIN statement that initiated
execution of the procedure and executes the GO statement that follows the BEGIN
statement.

60459410 E

4-7

1f an error occurs, the batch processor searches for the next EXIT statement in the
procedure or in the control statement sequence that called the procedure,

Therefore, if no errors occur, the sequence of control statement execution is BEGIN,
FORTRAN, LOAD, and GO; then the job terminates normally. If an error occurs during
FORTRAN task execution, the sequence of control statement execution is BEGIN, and
FORTRAN; then the job terminates abnormally.

PROCEDURE NESTING

Procedures can be nested. This means that a procedure can contain one or more BEGIN
statements that initiate execution of other procedures. Up to eight nesting levels are
allowed; the count starts with the BEGIN statement in the batch input file.

If an error occurs in a nested procedure, causing the batch processor to search for the
next EXIT statement, the search follows the sequence in which the control statements
would have been executed., The search starts with the remainder of the current
procedure and continues through the remainder of each procedure at each of the nested
levels. It ends with the remainder of the control statement sequence in the batch
input file. If it encounters a BEGIN statement during the search, it ignores the
statement and does not search the specified procedure.

For example, the following are the statements in the control statement record of a
batch input file and in two procedure files,

Batch Input File File FILEl File FILE2
ATTACH,FILEl. PROC,PROC1. PROC,PROC2,
BEGIN,PROC1,FILEl. ATTACH,FILE2. FTN200.

GO. BEGIN,PROC2,FILE2,

EXIT. LOAD.

DEFINE,BINARY.

If no errors occur during execution, the following is the control statement sequence.

ATTACH,FILE]l.
ATTACH,FILEZ.
FIN200.

LOAD L4

GO.

If an error occurs, execution continues after the EXIT statement with the DEFINE statement.

FORMAL PARAMETER SUBSTITUTION

A procedure can contain formal parameters for which values are substituted when the
procedure is executed. The BEGIN statement that initiates the procedure specifies the
substitution values.

4-8 60459410 E

Within the procedure, a string of characters is recognized as a formal parameter if the
string matches a formal parameter specified on the PROC statement and if it has a valid
delimiting condition before it and after it. The following are the valid delimiting
conditions.

® A character that is not A through Z, 0 through 9, or the underline character (_)
) The beginning or end of the statement

For example, in the following statement the character strings that could be specified as
formal parameters on a PROC statement are underlined.

LOAD, BINARY,CN=GO/#102.

Matching Substitution Values to Formal Parameters

Specify substitution values on the BEGIN statement using either or both of the following
parameter formats:

Format Example
formal parameter=substitution value KEY1=MYFILE
substitution value MYFILE

When both parameter formats are used on the BEGIN statement, all parameters specified as
only the substitution value must precede all parameters specified as formal parameter=
substitution value., This is because changing from one format to the other changes the
method used to match substitution values to formal parameters,

When the first substitution value on the BEGIN statement is specified in the format for
substitution value only, the batch processor matches the substitution value to the first
formal parameter on the PROC statement. It continues to match substitution values to formal
parameters according to their position in the parameter sequence (first with first, second
with second, and so on) as long as the format for substitution value only is used.

When the batch processor encounters a BEGIN statement parameter that uses the formal
parameter=substitution value format, it no longer uses positional parameter matching for the
procedure., 1t matches substitution values to formal parameters according to their pairing
on the BEGIN statement,

When using the formal parameter=substitution value format, specify parameters in any order.
In this case, the parameters are not dependent on order; matching is by formal parameter
instead of by sequential order.

For example, a procedure on file MYFILE has the following statements:

PROC,MYPROC, IN,OUT.
COPY, IN,OUT.

Each of the following BEGIN statements substitutes A for IN and B for OUT in the procedure.
BEGIN,MYPROC,MYFILE,A,B.
BEGIN,MYPROC,MYFILE, IN=A,O0UT=B.

BEGIN,MYPROC,MYFILE,OUT=B, IN=A.
BEGIN,MYPROC,MYFILE,A,OUT=B.

60459410 E 4-9

The following BEGIN statement is invalid because the batch processor cannot return to the
positional matching method after it uses the other method.

BEGIN,MYPROC,MYFILE, IN=A,B.

The following BEGIN statement is invalid because more substitution values are specified than
formal parameters on the PROC statement.

BEGIN,MYPROC,MYFILE,A,B,C.

The following BEGIN statement is invalid because it specifies a substitution value twice for
the same formal parameter.

BEGIN,MYPROC,MYFILE,A,IN=A,0UT=B,

Omitting Substitution Values

If the BEGIN statement does not specify a substitution value for a formal parameter
specified on the PROC statement, the batch processor does not alter the occurrences of that
formal parameter in the procedure. However, the batch processor still removes editing

characters as described under Suppressing Formal Parameter Substitution and Concatenating
Substitution Values in this chapter,

When matching substitution values to formal parameters according to their position in the
parameter sequence, the batch processor assumes that a substitution value is omitted when it
encounters either of the following in the BEGIN statement.

° Two consecutive commas

‘e Fewer substitution values than required for all formal parameters on the PROC
statement

When matching substitution values to formal parameters according to keyword=substitution
value parameters on the BEGIN statement, the batch processor assumes parameter omission if

both of the following conditions exist.

e When matching substitution values to formal parameters according to position, it did
not match a value with the formal parameter,

® No BEGIN statement parameter exists that equates the formal parameter to a
substitution value (formal parameter=substitution value).

For example,. a procedure on file MYFILE has the following statements:

PROC,MYPROC,COMPILE,GO,LIB1.
LOAD,COMPILE,CN=GO,LIB=LIBl.

The following statements omit substitution values for formal parameters COMPILE and LIB1.
BEGIN,MYPROC, ,BIN.
BEGIN,MYPROC,GO=BIN,
BEGIN,MYPROC, ,GO=BIN.

Each BEGIN statement results in execution of the following statement:

LOAD,COMPILE ,CN=BIN,LIB=LIBl.

4-10 60459410 &

Suppressing Formal Parameter Substitution

Prevent value substitution for an occurrence of a formal parameter by prefixing the formal
parameter occurrence with the @ character. The batch processor removes the @ character
before the statement is executed, but the formal parameter occurrence remains unchanged.

For example, file MYFILE contains the following statements:

PROC, MYPROC ,OUTPUT.
LOAD,FILEl ,@OUTPUT=0UTPUT.

The following statement initiates execution of the procedure.
BEGIN,MYPROC,MYFILE ,MYOUTPUT.
After formal parameter substitution, the following statement is executed.

LOAD,FILEl ,OUTPUT=MYOUTPUT.

Concatenating Substitution Values

Concatenate substitution values after the values replace formal parameters in a procedure.
Separate the formal parameters with the character A, After the batch processor substitutes
values for the formal parameters, it removes the /\ character, thereby concatenating the
substitution values.,

For example, file MYFILE contains the following statements:

PROC,MYPROC,R,W,X.
DEFINE,FILEl ,ACS=R™N/NX.

The following statement initiates execution of the procedure.
BEGIN,MYPROC,MYFILE,W=A,

After formal parameter substitution, the following statement is executed.
DEFINE,FILEl ,ACS=RAX.

The following example shows use of concatenation to specify a load address longer than eight
characters., The following are the statements on the procedure file MYFILE.

PROC ,MYPROC,P1,P2.
LOAD, F1,0=#PINP2,

The following is the BEGIN statement used.
BEGIN,MYPROC,MYFILE, CO00,00400000.
The following is the LOAD statement executed.

LOAD, F1 , 0=# C00000400000.

60459410 H 4-11

Suppressing @ o1 A Character Removal
You can prevent removal of the @ or A character from a procedure statement when the
statement is executed. To do so, you must specify two consecutive @ or A characters for

each @ or A character to remain in the statement,

The batch processor groups multiple @ or A characters in pairs. For each pair, one @ or A
character remains in the statement.

If an odd @ character remains after the consecutive @ characters are grouped in pairs and
the consecutive @ characters are the prefix of a formal parameter, the odd @ character

prevents value substitution.

The effect of the A character remains the same whether an odd or even number of consecutive
characters are specified.

For example, assume the following conditions:
° PARM is a formal parameter.
° SV is the substitution value for the formal parameter PARM.
e NOTPARM is in the procedure but is not a formal parameter.

The following shows the effect of the @ character in the procedure.

Before After
Substitution Substitution
@PARM PARM
@@PARM @sv
@E@EPARM @PARM
@QREE@PARM @@sv
@NOTPARM NOTPARM
@@NOTPARM @NOTPARM
@EE@NOTPARM @NOTPARM
@Q@E@ENOTPARM @@NOTPARM

The following shows the effect of the A character in the procedure:

Before After
Substitution Substitution
PARMPARM PARMPARM
PARMAPARM SVSV
PARM ANAPARM SVASY
PARMANAANAPARM SVASV
NOTPARMANOTPARM NOTPARMNOTPARM
NOTPARMAA NOTPARM NOTPARMANOTPARM
NOTPARMAAANOTPARM NOTPARMANOTPARM

4-12 60459410 E

ATTACH - ATTACH PERMANENT FILES

The ATTACH control statement (refer to figure 4-3) attaches private permanent files.

A permanent file must be attached before it can be accessed. The permanent files are
attached to the JDN of the job or interactive session in which the ATTACH statement is
executed,

An ATTACH statement can attach any of the following sets of private permanent files.
° All files belonging to you
. The specified files belonging to you
. The specified files accessible to you, but belonging to another user
. Files that have segments unavailable because a device is down

An ATTACH statement cannot attach files whose security level is greater than the security
level of the job or interactive session.

The ATTACH statement can specify the access modes allowed while each specified file is
attached. You must have the corresponding access permission to the file for each of the
specified access modes. Requests to open the file while it is attached can specify one or
more of the access modes specified on the ATTACH statement.

The WAIT parameter determines whether ATTACH waits for a file that is unavailable because
another job has the file attached such that file access cannot be shared (refer to
Concurrent File Access in chapter 2 of this manual).

If WAIT=N is specified, ATTACH does not wait. If WAIT=Y is specified, ATTACH waits until
the file is available or until it exceeds its wait time limit. (The wait time limit is
specified by an installation parameter.) If the ATTACH statement is issued interactively,
it displays a message while it waits for a file,

Format for Attaching Files the User Owns

1fn-list
ATTACH, * ,ACCESS=acs,WAIT=x,TRUNCATED=x.

Format for Attaching Files the User Does Not Own

ATTACH,1fn-1ist ,USER=userno,ACCESS=acs,WAIT=x,TRUNCATED=x.

. 1lfn-list Files to be attached. This parameter is required.
*

lfn-list List of files (1 through 16 file names separated by
commas).

* All private permanent files belonging to you. * is
mutually exclusive with USER=userno and ACCESS=acs.

USER=userno User number that owns the specified files. If USER=userno is
omitted, the user number of the job or interactive session is
used. USER=userno and * are mutually exclusive.

Figure 4~3, ATTACH Control Statement Format (Sheet 1 of 2)
60459410 E ' 4-13

ACCESS=acs Access modes allowed while the specified files are attached. The
set of access modes is indicated by a string composed of one or
more of the following letters:

R Read access

W Write access
X Execute access
A Append access
M Modify acceés

If ACCESS=acs is omitted, only read and execute modes are allowed
during the attach. ACCESS=acs and * are mutually exclusive.

WAIT=x Indicates whether ATTACH waits if a file is currently unavailable.
If WAIT=x is omitted, ATTACH waits.

Y ATTACH waits
N ATTACH does not wait
TRUNCATED=x Allows you to access files that have segments unavailable because a

device is down.

Y Access in read mode only. The ACCESS=R parameter
must be specified so that truncated files cannot be
written on or executed.

N Access is not available to truncated files. N is
the default.

Figure 4-3, ATTACH Control Statement Format (Sheet 2 of 2)

ATTACH cannot attach a file if the file name is the same as that of a private file (local or
permanent) that is already attached to the job.

ATTACH attaches the files in the order specified, If it cannot attach a file, it continues
processing with the next file in the list. It sends a message to the job dayfile or the
interactive terminal if a file cannot be attached. It does not send a message when it
successfully attaches all files.

4-14 60459410 E

AUDIT - LIST FILE INFORMATION

The AUDIT control statement lists information about permanent mass storage files.

A privileged user can list information about any permanent file on the system. A master

user can list information about all private, pool, or public files with the account
identifier(s) assigned. A system user can list information about the I/0 queues. A l
nonprivileged, nonmaster user is allowed to list information about only the files that he or

she owns.

To list information about files belonging to a pool, a nonprivileged user must attach the
pool before executing the AUDIT statement; a privileged user need not attach the pool,
Private files can be attached or unattached.

The format of the AUDIT control statement is shown in figure 4-4. All parameters are
optional and can, except for the first, appear in any order. The first parameter, if
specified, must be a list of file names.

AUDIT,lfn-list ,USER=userno,POOL=plist ,ACCOUNT=alist,JCAT=jcatlist,LID=1idlist,
MPN=mlist ,DSET=devset ,PACK=packlist,SELECT=opts,DATE=mmddyy,TIME=hhmm,L.O=x,LIST=1fn/len.

1fn-list List of 1 through 128 file names, separated by commas. The
specified files are assumed to belong to the user number specified
by the USER parameter or to the pools specified by the POOL
parameter. If omitted, all files that belong to userno or plist
are listed, If SEL=0 is specified, the 1lfn-list identifies the
last-group-files(s) of the output—file-family(s). If SEL=0 is
specified and lfn-list is omitted, AUDIT lists information about
all output-file—-families.

USER=userno File owners.,
For a nonprivileged user:
userno User number of the nonprivileged user.
0 Public files.
For a nonprivileged user with master user status:
u-list List of 1 through 128 user numbers separated by
commas., If user number 0 is specified, AUDIT lists

public file information.

* All file owners, private, pool, and public.

The user must use the ACCOUNT parameter and
must have master user status for all
accounts specified.

Figure 4-4, AUDIT Control Statement Format (Sheet 1 of 4)

60459410 H 4-15

For a privileged user:

u-list List of 1 through 128 user numbers separated by
commas. If user number O is specified, AUDIT lists
public file information.

* All file owners, private, pool, and public.
For a system user who has specified SEL=I or SEL=0:

u-list List of 1 through 128 user number(s) that queued the
files (original owner). If omitted, AUDIT lists
information about all queue files.

If both USER=userno and POOL=plist are omitted, AUDIT lists
information for files belonging to the user number under which
AUDIT is executing.

PoOL=plist List of 1 through 128 pool names separated by commas. The pools
must be attached for a nonprivileged user.

ACCOUNT=alist For a nonprivileged user, alist is a list of one to seven account

— identifiers separated by commas. The user must be validated for
all specified account identifiers. For a privileged user, alist is
a list of 1 through 128 account identifiers separated by commas.

If this parameter is omitted, files are candidates for listing
regardless of their account identifiers.

JCAT=jcatlist List of 1 through 64 job categories separated by commas. This
parameter is allowed only if SEL=I is specified and applies only to
the input queue. If SEL=I is specified and JCAT is omitted, all
input queue files are listed regardless of job categories.

LID=lidlist List of 1 through 128 destination LIDs for input or output files.
This parameter is allowed only if SEL=I or SEL=0 is specified and
applies only to the input or output queues. If SEL=I or SEL=0 is
specified and LID is omitted, all input/output queue files are
listed regardless of their destination LIDs.

MPN=mlist List of 1 through 128 master project numbers separated by commas.
If this parameter is omitted, files are candidates for listing
regardless of their master project number.

DSET=devset List of 1 through 128 device sets separated by commas. Allows
files to be audited on a device set basis. devset is the device
set name (DVSTnn). If this parameter is omitted, all sets are
audited.

PACK=packlist Allows files to be audited on a pack basis. packlist is a list of
1 through 128 pack names (PACKnn) separated by commas. Only those
files beginning on a specified pack are audited. Those that merely
continue from another pack are not audited.

Figure 4-4. AUDIT Control Statement Format (Sheet 2 of 4)

® 4-16 60459410 H

SELECT=opts File characteristics of all files audited (any combination, except
as noted, of the following letters without separators). A file
must meet all characteristics specified, in order, to be audited.

A Files accessed on or after the date and time specified
by the DATE and TIME parameters.

C Files created on or after the date and time specified
by the DATE and TIME parameters.

I Files in the input queue. Only the system user can
select this option. The I option is mutually
exclusive with the PO and PROJ parameters.

M Files modified on or after the date and time specified
by the DATE and TIME parameters.

N Reverses the meaning of all the A, C, or M options;
that is, NA means not accessed, NC means not created,
and NM means not modified. ANCM means not accessed,
not created, and not modified.

0 Files in the output queue, Only the system user can
select this option. The O option is mutually
exclusive with the PO and PROJ parameters.

X Files expired. A file expires when the current date
is greater than the file creation date plus its
retention period.

If SELECT=opts is omitted, AUDIT assumes no options.

DATE=mmddyy Date used by the A, C, and M options on the SELECT=opts parameter.
The first two digits of the date indicate the month, the next two
digits the day of the month, and the last two digits the last two
digits of the year. ’

If DATE=mmddyy is omitted, AUDIT uses the current date.

TIME=hhmm Time used by the A, C, and M options on the SELECT=opts parameter.
hh is the hour, based on a 24-hour clock. mm is the minute in the
hour.

If TIME=hhmm is omitted, AUDIT uses midnight.

Figure 4-4, AUDIT Control Statement Format (Sheet 3 of 4)

60459410 H 4-16.1 @

LO=x Audit information required:
F Full audit.
P Partial audit.
If LO=x is omitted, AUDIT writes partial audit information.

LIST=1fn/len Listing file specifications:

1fn File name (one to eight letters or digits, beginning
with a letter)., If 1fn is omitted, AUDIT uses file
OUTPUT.

len File length in 512-word blocks. If len is omitted,

the file length is #40 blocks.

Figure 4-4., AUDIT Control Statement Format (Sheet 4 of 4)

4-16.2 60459410 H

-

FILE SPECIFICATION

The set of files for which AUDIT lists information can be specified by name or by

attributes. The set of files must have all the attributes specified.

The USER and POOL

parameters specify file ownership, the DSET and PACK parameters specify file residence, and
the SELECT, DATE, and TIME parameters can specify file usage and age.

If no file names are specified and the USER and POOL parameters are omitted, AUDIT lists
information about permanent files belonging to the user number for which AUDIT is executed.

Table 4-2 summarizes the interaction of the USER and POOL parameters.

Table 4-2, Interaction of USER and POOL Parameters for AUDIT, DUMPF, and LOADPF

Privileged User

Nonprivileged User

Files Processed No USER USER=1list USER=ALL No USER USER=usernof
No POOL~ No POOL= No POOL= No POOL= No POOL=
POOL | plist [POOL | plist |POOL | plist | POOL | plist | POOL | plist
User private files X X
Listed user private X X X X
files (or public files
if user number O is
specified)
Listed pool files X X X X
All files regardless X X
of owner (including
public and pool files)

file user number.

fFor AUDIT, a nonprivileged user can specify his or her own user number or 0, the public

60459410 H

AUDIT OUTPUT

The LO parameter on the AUDIT control statement determines whether AUDIT produces a full or
partial output listing. A full listing produces all of the headings described next (with
the exception of ACCOUNT and MPN), while a partial listing contains only the first 12
headings. A full listing does not exceed 132 characters, excluding the carriage return, and
a partial listing does not exceed 80 characters, excluding the carriage return. Dates
appear as month, day, year. Time appears in a 24-hour format. All values are decimal
unless noted otherwise.

AUDIT prints a report of each account identifier, starting at the top of a new page. Print
lines do not exceed 80 characters for partial listings and 132 characters for full listings,
excluding carriage return., Dates appear as month, day, and year; time appears as a 24-hour
clock,

The following is a list of the column headings used in a full AUDIT listing and the
information given under each heading.

Heading Description
FSN File sequence number. Hexadecimal count of files audited.
NAME File name. The file name is suffixed with an asterisk (*) if the file is a

production file.

OWNER File owner: individual user number, public user number (0), or pool name.
If SEL=I or SEL=0 is specified, then the user number of the original file
owner is listed.

TYP File type: controllee or data [virtual code (VC) or physical data (PD)].

FC File category: batch input file (B), input queue file (I), output queue
file (0), user file (U), system—generated drop file (S), or not defined (N).

RT Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), or control word (W).

BT Blocking type: character count (C), internal (I), or record count (K).

4-18 60459410 H

Heading Description

ACS Access permission set: read (R), write (W), execute (X), append (A), modify
(M) permissions, no permissions (NONE), or purge only (PURGE). AUDIT lists
the owner”s access permission set for private files and the general access

permission set for pool and public files.

EXT File allocation: segmentable (S) and/or extendable (X).
SL Security level: 1 through 8.
DEVICE Device name of mass storage file. An asterisk following the device name

indicates that a portion of the file resides on another disk.

DSET Name of device set.

FLEN Number of 512-word blocks in file.
FACT Account identifier.

DORG Creation date (date of origin).
TORG Creation time (time of origin).
DOLA Date of last file access.

TLR Time of last file access.

DOLM Date of last file modification.
TOLM Time of last file modification.
EXP Expiration date (creation date plus retention period).
ACCOUNT Account identifier,

MPN Master project number,

If SEL=I or SEL=0O is specified, the TYP column is deleted and the following column headings

replace ACS and EXT:

Heading Description
LID Destination 1lid for output and/or input queue files.
JCAT Job category of input queue files. For all other file types, this field is

left blank.

60459410 H

Figure 4-5 shows an example of a partial AUDIT output

control

statement:

AUDIT,U=0,040018 ,LO=P.

listing as produced by the following

FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN
1 POOLFILI 40018 PD U W C RX SX 1 PACKO1 DVSTO1 4321
2 EXECFIL 0 Ve U W C X SX 1 PACKO1 DVSTO1 22
3 MYFILE 40018 PD U W C RX SX 1 PACKI1F DVSTL4 123
4 NEWFILE 0 PD U W C MAR SX 1 PACK30 DVSTIE 16
5 PUBFILE 0 PD u W C MAR SX 1 PACK20 DVSTL4 148000
Figure 4-5, AUDIT Output Example

If the ACCOUNT and/or MPN parameters are specified on the AUDIT control statement, files are

sorted by account, master project number, user number, and file name.

of ACCOUNT and MPN, a subheader and subtotals are printed on the AUDIT output.

For every combination

Figure 4-6 shows an example of an AUDIT output listing as produced by the following control

statemen

t:

AUDIT,AC=AAAAAA ,MPN=AUD ,DEF

CYBER 200 AUDIT - USER 112311 05/14/86 06.01.32 PAGE 1
ACCOUNT = AAAAAA MPN = AUD
FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN
1 TRETST 112311 PD R C XMARW X 1 PACK4F DVSTLF 4
TOTAL SIZE = 4
ACCOUNT = AAAAAA MPN =DEF
FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN
1 ONETST 112311 PD R C XMARW X 1 PACKIF DVSTLF 16
2 TWOTST 112311 PD R C XMARW X 1 PACKIF DVSTIF 16
TOTAL SIZE = 32
Figure 4-6., AUDIT Output Example
(if either the ACCOUNT or the MPN parameters are specified)
4-20 60459410 H

CHARGE - ASSIGN ACCOUNT AND PROJECT NUMBER

The CHARGE control statement allows you to change the account identifier and change or
define a project number within a batch job, an interactive session, or PTF processing. The
account identifier specified on the CHARGE statement must be valid for the user number under
which the statement is being executed,

The CHARGE statement can be issued several times during a batch job, interactive session, or
PTFS processing. There is no limit to the number of times the statement can appear. The
CHARGE statement remains in effect until either a new CHARGE statement is issued or the job
terminates. When a new CHARGE statement is processed, the accumulated SBU/STU information
is written to the user and system dayfiles and to the account file, (SBU/STU information is
not written to the user dayfile for interactive sessions or PTFS processing.) Subsequent
job processing is charged to the newly supplied charge number.

There are two SBU/STU accumulators: one to accumulate SBUs/STUs for the job and the other
to accumulate SBUs/STUs for the current account identifier and project number, Both of the
SBU/STU totals are printed in the dayfile and the account file at the end of a batch job if
a project number exists; otherwise only the job SBU/STUs are written to the dayfile.

You, like all users, have a default account identifier assigned to your user number. You
also have the option of being validated with a default project number via validations. At
the start of a batch job or interactive session, if you do not issue a CHARGE statement, the
default project number, if one exists, and the account identifier specified on the USER or
LOGIN statement or the default account identifier are assigned to the job or session., 1If a
CHARGE statement is entered, both the account identifier and the project number must be
specified on the statement.

If your user number has user project control (UPC) status and no project number assigned as
default, you must supply a CHARGE statement as the first executable statement in the batch
job, interactive session, or PTFS processing. If you do not supply a CHARGE statement as
the first executable statement after the RESOURCE statement in a batch job, the job is
aborted with no exit processing. For an interactive session, no other statements are
accepted until the CHARGE statement is executed. For the transferring of permanment files
to the CYBER 205 from a remote host through PTFS, you must supply a CHARGE statement after
the USER statement if you have UPC status and no project number; otherwise, the transfer
aborts. '

The master project number (the first one to three characters of the project number,
excluding the special characters * and -) is appended to the account identifier and assigned
to any mass storage files created during the job or session.

The following are examples of master project numbers extracted from project numbers.

Project Number Master Project Number
ABCDEF ABC
A-B*CDEF ABC
A*B* AB
*ABC-DEF ABC

60459410 E 4=21

Figure 4-7 shows the CHARGE control statement format.

CHARGE,account ,project.

account CYBER 200 account identifier (one to eight alphanumeric
characters). This parameter is positional and mandatory.

project A project number (1 to 20 alphanumeric characters, including the
special characters * and =), This parameter is positional and
mandatory.

Figure 4-7. CHARGE Control Statement Format

COMMENT - SEND MESSAGE TO JOB DAYFILE

The COMMENT or * control statement enters a message in the job dayfile.

A COMMENT or * statement is only valid within a batch job. The batch processor executes the
COMMENT or * statement itself; it does not initiate execution of a utility program.

Figure 4-8 shows the COMMENT and * control statement format. A period is required after
COMMENT, but no space need appear after the required period; no ending punctuation is needed
at the end of the message. Multiple COMMENT or * control statements are required to send a
message longer than the number of columns available on a single execute line.

COMMENT .message
i * message
message String of characters to be sent to the job dayfile. The string

should contain only characters that can be printed at a line printer.

I Figure 4-8. COMMENT and * Control Statement Format

4-22 60459410 G

COMPARE - COMPARE FILE CONTENTS

The COMPARE control statement compares, bit for bit, the contents of one file with that of
another. If the contents of the two files do not match, COMPARE lists the contents of the
nonmatching words.

COMPARE can compare mass storage files and tape files. Compared mass storage files can be
attached permanent files or temporary files; they can be data files or controllee files.
COMPARE starts its comparison on both files at the beginning of information plus any
relative word offset.

COMPARE does not detect whether files that have been blank compressed which are otherwise
equivalent when expanded are equivalent if the files were blank compressed using different
formulas.

If a compared file is a labeled tape file, COMPARE compares the contents of the file from
its HDRl label to its EOFl label; it does not compare the contents of the file labels. If a
compared file is an unlabeled tape file, COMPARE compares the contents of the file from load
point to the double tape marks or EOFl label that marks the end of the file.

The compared files should have the same record format. COMPARE reads the contents of each
file as a continuous bit string, not as a sequence of records. Therefore, it compares
record delimiters within the data.

COMPARE lists the nonmatching words in the dayfile of a batch job or at the terminal of an
interactive session.

Figure 4-9 shows the COMPARE control statement format. Only the first two parameters, which
specify the compared files, are required.

COMPARE,alfn,blfn,L=len,A=aadr ,B=badr,N=1t.
alfn,blfn Names of the files to be compared.
L=len Hexadecimal number of words to be compared.

If the L parameter is omitted, comparison stops at the end of the
shorter file.

A=aadr Relative hexadecimal word address in file alfn at which comparison
is to begin, counting the first word of the file as 0.

If the A parameter is omitted, comparison begins with the first
word of file alfn.

B=badr Relative hexadecimal word address in file blfn at which comparison
is to begin, counting the first word of the file as 0.

If the B parameter is omitted, comparison begins with the first
word of file blfn.

N=1t Decimal number of nonmatching words allowed before comparison
stops. Both the nonmatching words and their relative locations are
displayed.

If N=1t is omitted, comparison stops at the first nonmatching word.

Figure 4-9, COMPARE Control Statement Format

60459410 J 4=23

CONTROLLEE FILE COMPARISON

When comparing controllee files, you might not want to compare the minus page and register
file stored in the first two blocks of the files. To omit the first two 512-word blocks.
from the comparison, specify the starting compare address for each file with the A and B
parameters. The starting compare addresses are specified as hexadecimal word addresses.

For example, the following statement omits the first two blocks from the comparison of files
FILEl and FILE2,

COMPARE, FILEl ,FILE2 ,A=400,B=400.

4-24 60459410 E

COPY - COPY A FILE

The COPY control statement copies the contents of one file to another file.

The file copied (the input file) must be an existing file. It can be a mass storage file or
a tape file. The file copied (the output file) can also be a mass storage file or a tape
file, but it need not exist unless it is a tape file. COPY first searches for the local and
attached permanent files and tape files for the specified files. Then, if necessary, it
searches the attached pools. COPY cannot copy to public files or system pool files.

If the file does not exist, COPY creates a local mass storage file. The new file is created
with the name specified for the output file and the same characteristics as the input file,
including its type, access permissions, record format, internal characteristics, and length,

If the original file is a systemcreated

drop file, the output file is a user—created
drop file,

By default, the copy begins at the beginning of the input file. However, a different
starting location for the input file may be specified with the I parameter and a different
starting location for the output file with the O parameter.

By default, the copy ends when COPY encounters the end of the input file. However, if the L
parameter is specified, the copy ends when COPY has copied the specified number of words.

COPY returns status and error information to the dayfile of a batch job or to the terminal
for an interactive session. It always displays the number of words copied (in hexadecimal).

In a batch job, the COPY control statement cannot copy to a file by the name of INPUT. If
this is attempted, the COPY utility issues an error message that prohibits the file from
being copied to file INPUT.

Figure 4-10 shows the COPY control statement format. The first two parameters specifying
the input and output files are required and must appear in the order shown.

COPY,inlfn,outlfn,L=len,I=inadr,0=outadr,PACK=packid, IRW=irw.
inlfn Name of file to be copied.

outlfn Name of file that contains a copy of all or part of file inlfn.
It can be either an existing file or a new file COPY creates.

L=len Hexadecimal number of words to be copied.

I=inadr Relative hexadecimal word address in file inlfn at which copying
is to begin, counting the first word of the file as 0.

If the I parameter is omitted, inlfn is copied from its beginning.

Figure 4-10. COPY Control Statement Format (Sheet 1 of 2)

60459410 J 4-25

O=outadr Relative hexadecimal word address in file outlfn at which copied

information is to be placed, counting the first word of the file
as 0.

If the O parameter is omitted, the copy begins at the beginning
of outlfn.

PACK=packid Identifier for a pack in the device set on which outlfn is to
reside. If outlfn already exists on another pack, the system
ignores this parameter, copies inlfn to the existing outlfn, and
sends a warning message to the job dayfile or interactive
terminal.

If packid is omitted and outlfn does not exist, the system
selects a pack and creates outlfn.

IRW=irw Inhibit rewind of input and output files. This applies to tape
files only.

Y Files are not rewound prior to copying.
N Files are rewound prior to copying.

If IRW=irw is omitted, N is used.

Figure 4-10. COPY Control Statement Format (Sheet 2 of 2)

COPYING TO OR FROM A TAPE FILE

To copy data to or from a tape file, execute the appropriate REQUEST and LABEL statements
before executing the COPY statement. If the tape file is the input file, specify read
access for the file. If the tape file is the output file, specify write access for the file.

If a labeled tape file is the input file, COPY opens the tape file and verifies its HDR1
label. 1If a labeled tape file is the output file, COPY opens the tape file and verifies or
writes its HDR1 label, depending on the label processing option on the LABEL statement for
the file.

When the copy terminates, COPY closes the tape file. The end-of-file indicator is written
as required for the tape format used.

COPYING TO A MASS STORAGE FILE

When a mass storage file is specified as the output file, the output file need not be as
long as the source file, unless the output file has been requested with the noextend
option. COPY extends the output file as necessary. An output file that COPY creates has
the same length as the input file.

However, if the O parameter is specified so that the copy does not begin at the beginning of
the output file, the data in the input file does not fit in the output file.

For example, assuming FILEl is a mass storage file, the following statement returns an error
because the file created is not long enough for the data to be copied.

COPY,FILEL,,0=100.

When a tape file is copied to a mass storage file, the mass storage file is created with a
length of 512 blocks if it did not exist previously.

4-26 60459410 J

CONTROLLEE FILE COPY
The first two blocks of a controllee file contain its minus page and register file. To omit
copying the minus page and register file of a controllee file, specify the starting copy
address with the I parameter. The copy address is specified as a hexadecimal word address. ‘
For example, the following COPY statement omits copying the first two 512-word blocks.

]

COPY,FILE1,FILE2,I=400.

60459410 G 4=27

COPYL - COPY LOGICAL RECORDS

The COPYL control statement copies logical partitions of files. Unlike the COPY statement,
COPYL does record type conversion and replication of logical subsets of data files, and it
can interface to files connected to terminals (files created by REQUEST statements that
specify DEV=TE).

The input file must be attached or local. All device types are treated alike in positioning
operations, always starting at the beginning of information.

If the output file is already a local file or attached permanent file, COPYL does not reduce
the file after completing the copy. However, if COPYL creates the file, it does reduce the
file after completing the copy.

If the output file is a file connected to a terminal, COPYL displays the first 24 records at
the terminal; it then displays the following prompt:

ENTER "C" TO CONTINUE "END" TO TERMINATE

If you enter C, COPYL displays the next 24 records and then repeats the prompt. The display
and prompt cycle repeats until you enter END or until the specified copy completes.

The value of the PART parameter determines not only the level of skip and copy, but also the
structure of the output file. Input and output files are always read and written at the
record level, but the output data is guaranteed to be delimited at whatever partition level
was specified. If a partition delimiter with a level higher than that specified on the
execute line is read on either the input to the copy operation or a skip operation, the
operation is stopped; if a partition delimiter of the specified level does not already exist
in the outfile, one is inserted at this point.

Before beginning the copy, COPYL skips forward the number of partitions specified by the.
ISKIP and OSKIP parameters. The ISKIP parameter specifies the number of partitions skipped
on the input file; the OSKIP parameter specifies the number of partitions skipped on the
output file.

In a batch job, the COPY control statement cannot copy to a file by the name of INPUT. If
this is attempted, the COPY utility issues an error message that prohibits the file from
being copied to file INPUT.

The copy terminates when the specified number of partitions have been copied or COPYL
encounters a higher-level partition boundary. For example, a record copy terminates if

COPYL encounters a group delimiter.

Figure 4-11 shows the COPYL control statement format.

COPYL,infile,outfile/len,PARTITION=part ,NUMBER=number ,ISKIP=ipnum,0SKIP=opnum, IRW=irw,

NOCOMP.

infile \ Input file. The parameter is positional and required. The
input file must be different from the output file.

outfile Output file. The parameter is positional and required. The

input file must be different from the output file.

Figure 4-11. COPYL Control Statement Format (Sheet 1 of 2)

4-~28 60459410 J

len

PARTITION=part

NUMBER=number

ISKIP=1ipnum

OSKIP=opnum

IRW=irw

NOCOMP

Length at which outfile is created by COPYL. If infile is on
disk, len defaults to the length of infile. If infile is on
tape or connected to a terminal, len defaults to 128 blocks. If
outline is already a local or attached permanent file, len is
ignored.

Indicates whether COPYL copies records or groups.
R . Record
G Group

If PARTITION=part is omitted, COPYL copies records.

* (all) or number of partitions (as specified by the part
parameter or default) to be copied. Default is *, 1If a
higher-level partition delimiter or an end-of-information is
encountered before num is exhausted, the copy operation
terminates. The normal termination message indicates the amount
of data copied. If NUMBER=number is omitted when copying
records, COPYL copies until it encounters a group delimiter or
the end of the file. If NUMBER=number is omitted when copying
groups, COPYL copies until it encounters the end of the file.

Number of partitions (as specified by part or default) to be
skipped on infile before the copy operation is begun; default is
0. If a nonzero value is specified and a higher-level partition
delimiter or an end-of-information is encountered before ipnum
is exhausted, COPYL terminates with a return code of 8.

*# (all) or number of partitions (as specified by part or
default) to be skipped on outfile before the copy operation is
begun; default is 0. If a numeric value is specified and a
higher-level partition delimiter or an end-of-information is
encountered before opnum is exhausted, COPYL terminates with a
return code of 8.

Inhibit rewind of input and output files. This applies to tape
files only.

=<

Files are not rewound prior to copying.

N Files are rewound prior to copying.

If IRW=irw is omitted, N is used.

Indicates that COPYL should not perform blank compression on the
output file. If NOCOMP is omitted, COPYL performs blank
compression.

Figure 4-11. COPYL Control Statement Format (Sheet 2 of 2)

60459410 J

4-29

DAYFILE - COPY THE JOB DAYFILE

The DAYFILE control statement copies the job dayfile. Depending on the option selected, it
copies either the entire dayfile or only the portion of the dayfile written since the last
DAYFILE statement was processed.

The batch processor processes the DAYFILE
statement. Therefore, the statement is
available only in batch jobs. It is not a
valid entry in an interactive session.

Specify on the DAYFILE statement the file to which the dayfile is copied. The file can be
an attached permanent file or an existing temporary file. It cannot be a public file or a
system pool file. If- the file specified does not exist or is not attached, DAYFILE creates

the file.

If a file is not specified on the statement, DAYFILE creates a file named OUTPUT and copies
the dayfile to that file. After processing a statement, the batch processor renames the
OUTPUT file so that it is part of the print family of files for the job (refer to Job
Processing in chapter 3 of this manual). Therefore, if a file is not specified on the
DAYFILE statement, the dayfile is printed with the job output.

DAYFILE copies until it encounters the end of the dayfile or the end of the file on which it
is writing. After copying the dayfile, DAYFILE .always reduces the file length to the length
actually used. It reduces an existing file in the same way as it reduces a file it creates.

Figure 4-~12 shows the DAYFILE control statement format.

‘ 4-30 60459410 G

DAYFILE,1fn/len,LO=option.

1fn Name of the file on which the dayfile is copied. It can be either
an existing file or a new file created by the utility. If 1fn is
omitted, the file name is OUTPUT.

len Number of blocks to be allocated for the file. 1len can be
designated by decimal or hexadecimal number representation. If in
hexadecimal, the number must be preceded by the pound sign (#). If
len is omitted and 1fn is not an existing file, eight blocks are

allocated.
LO=option Indicates the type of listing generated.

I Requests incremental copy: only that portion of
your dayfile that is new since the last DAYFILE
request is copied. If this is the first request,
the entire dayfile is copied (same as F).

F Requests full copy: the entire dayfile is copied.

If LO=option is omitted, DAYFILE copies the entire dayfile.

Figure 4-12. DAYFILE Control Statement Format

DEFINE - DEFINE A PERMANENT FILE

The DEFINE statement defines a private permanent mass storage file.
Figure 4-13 shows the DEFINE control statement format. The first parameter must be the file

name. File length, if specified, must be the second parameter. All other parameters are
optional and can appear in any order.

60459410 G 4-30.1/4-30.2 ||

If the file named on the DEFINE statement does not already exist as a local mass storage
file, a new file is created as an attached permanent mass storage file,

Each characteristic

of the new file is given the default value unless a different value is specified using the
corresponding optional DEFINE parameter.

If the file named on the DEFINE statement already exists as a local mass storage file,
DEFINE changes the local file to a permanent file, but it does not change other file

characteristics.

All DEFINE parameters except the file name are ignored.

characteristics, use the SWITCH, PERMIT, or ROUTE utilities.

To change file

Upon successful completion of this operation, the message CREATED PERMANENT FILE or EXISTING
LOCAL FILE MADE PERMANENT is sent to the job dayfile or the interactive terminal.

DEFINE,1fn/len,ACCESS=acs ,RLMIN=rlmin,RLMAX=r1lmax, NOEXTEND,NOSEGMENT ,PACK=packid,
PC=pc ,RMD=rmd ,RT=rt ,SECURITY=1vl,SFO=org, TYPE=type ,AU=blocks.

1fn

len

éngSS=acs

RLMIN=rlmin

RLMAX=r1lmax

Name of the mass storage file. 1fn must be one through eight
letters or digits, beginning with a letter (except for the name of
a local drop file).

Number of 512-word blocks initially allocated for the file (decimal
or hexadecimal number between 1 and #FFFFFF.

Access permission set of the file owner (any combination of the
following letters without separators).

R Read permission

W Write permission
X Execute permission
A Append permission
M Modify permission

If ACCESS=acs is omitted, the default access permission set depends
on whether the file is a new file or an existing local file. For a
new file, DEFINE assumes ACCESS=RWXAM. For an existing file,
DEFINE does not change its existing access permission set.

Minimum record length in bytes. If RT=F is specified, the minimum
record length is ignored. 1If RLMIN=rlmin is omitted, the minimum
length is one byte.

Maximum record length in bytes (fixed record length for F format
records). If RLMAX=rlmax is omitted, the default maximum record
length is an installation parameter value (released value, zero).

A maximum record length of zero prevents writing on a direct access
file.

60459410 F

Figure 4-13. DEFINE Control Statement Format (Sheet 1 of 3)

4-31

NOEXTEND Indicates that the file cannot be extended. If NOEXTEND is
omitted, the file can be extended as necessary. To create a file
that will always remain contiguous, both the NOEXTEND and the
NOSEGMENT options must be specified.

NOSEGMENT Indicates that the initial file space allocated must be contiguous.
If NOSEGMENT is omitted, the system can allocate initial file space
in multiple segments. To create a file that will always remain
contiguous, both the NOEXTEND and the NOSEGMENT options must be
specified.

PACK=packid Identifier of a pack in the device set on which the file is
created. Pack identifiers are six characters long, left-justified,
and blank filled. Excess characters are truncated. The pack
parameter is ignored for existing local files. If PACK=packid is
omitted, the system selects a pack.

PC=pc ASCII padding character used to fill the working storage area. If
PC=pc is omitted, the installation-defined default padding
character (released value, blank) is used.

=rmd ASCII record mark character for R format records. If RMD=rmd is
omitted, the installation-defined character [released value, ASCII
US character (#1F)] is used.

RTI=rt Record format. If SFO=D is specified, the only valid record format
is F.

If RT=rt is omitted, the default format depends on the file
organization. For sequential access files, the installation
default format (released value, R) is used. For direct access
files, F format is used.

F ANSI fixed length

R Record mark delimited
U Undefined

W Control word delimited

SECURITY=1vl Security level (1 through 8). The specified security level cannot
be greater than the security level of the job or interactive
session. If SECURITY=1lvl is omitted, the security level of the job
or interactive session is used. .

SFO=org File organization. If SFO=org is omitted, the installation-defined.
default organization (released value, sequential access) is used.

D Direct access

S Sequential access

Figure 4-13. DEFINE Control Statement Format (Sheet 2 of 3)

4-32 60459410 G

TYPE=type File type. If TYPE=type is omitted, the file is a physical data

file.
C Controllee file
P Physical data file
AU=blocks Allocation unit. Allows the user to aid performance by giving the

system a guideline on the integer number of 512-word blocks to
allocate when the file is extended. The value range of blocks is 1
to 65,535. If the file is created and blocks is not a multiple of
the DAU (Device Allocation Unit) for the device in which the first
allocation occurs, blocks is rounded up to the next multiple of the
DAU. If the file is already local, this parameter is ignored.

Figure 4-13. DEFINE Control Statement Format (Sheet 3 of 3)

DEFINING A NEW FILE

If the file does not. exist, DEFINE creates a new mass storage file. Using the length, disk
pack residence, extendability, and segmentation specifications from the control statement,
DEFINE allocates file space (refer to File Space Allocation in chapter 2 of this manual).
The following lists the effect of each combination of the NOSEGMENT and NOEXTEND parameters.

NOEXTEND NOSEGMENT Effect

Omitted Omitted File has one or more segments. Noncontiguous segments
can be added.

Specified Omitted File has one or more segments. It cannot be extended.

Omitted Specified File has one segment. Noncontiguous segments can be
added.

Specified Specified File has one segment. It cannot be extended.

DEFINE also defines the following file attributes for a new file:
. Access permission set of the file owner
° File type (controllee or data)
. Security level
. Record format characteristics

DEFINE cannot define a file with a security level greater than the job or interactive
session security level.

The retention period. for the file is an installation option. The SWITCH control statement
can be used to specify a particular number of days the file is to be retained on mass
storage. The retention period determines the expiration date referenced by the DUMPF

60459410 G 4-33

DIVERT - CHANGE THE DESTINATION OF AN OUTPUT FILE

The DIVERT statement allows you to change the destination LID of any file in the output
queue whose original owner is the user number from which DIVERT is executing.

Output files are specified by their jdn or by the JN=jobname parameter. If jdn or jobname
is not specified and if DIVERT is executed from within a batch job, the output of the batch
job is changed to the LID specified by the ST parameter. If the new LID is associated with
a different PID than the old LID, any routing information sent by the old host with the
input batch file or specified by the JCS or I parameter of the MFQUEUE is ignored. In this
case, the disposition of the output is dependent on the system defaults of the new host.
For example, if MFl and MF2 are LIDs associated with two different NOS systems and JOBl is
the output of a job submitted from MFl but DIVERTed to MF2, the user number and family
information sent with JOBl is lost and it is likely that JOBl will print on the default
printer of MF2 using JOBl as the banner.

DIVERT is executable from both batch jobs and interactive sessions. A successful DIVERT
with either jdn or jobname specified will cause the appropriate output spooler application
to start up (provided OUTPUT is ON and there are not too many applications running already).

Figure 4-13.1 shows the DIVERT control statement format.

jdn
DIVERT, JN=jobname ,ST=newlid.

jdn Job descriptor number (1 through 2047). This parameter is
optional and mutually exclusive with the JN=jobname parameter.
The output—-file-family with the specified jdn has its
destination LID changed to newlid.

JN=jobname Job name (or file name) as specified on the Q,0 command. This

- parameter is optional and mutually exclusive with the jdn
parameter. The output—-file~-family(s) with job name specified by
jobname has its destination LID changed to newlid.

ST=newlid Logical ID (LID) of the remote host to which the output

- specified by jdn or jobname is to be sent. If neither jdn or
jobname is specified, then the batch job output from which
SUBMIT is executing is sent to newlid. This parameter is
required.

Figure 4-13.1. DIVERT Control Statement Format

® 4-34 ; / 60459410 H

Upon successful completion, the following message is issued for each output-file-family that

is diverted:
OUTPUT FILE jobname WITH JDN = jdn DIVERTED TO LID newlid

An unsuccessful completion of the DIVERT command will result in one of the following
messages:

SYNTAX ERROR

SYSTEM MESSAGE #fc ERROR, RCODE + #rc, SSCODE = #ss
NO USER OWNED OUTPUT FILES FOUND WITH JDN = jdn

NO USER OWNED OUTPUT FILES FOUND WITH JN = jobname
newlid IS NOT A VALID DESTINATION LID

JDN OR JN MUST BE SPECIFIED WHEN INTERACTIVE

JDN AND JN PARAMETERS ARE MUTUALLY EXCLUSIVE

60459410 H

4=-34.1

DMAP - PROVIDE INFORMATION ON LOCATION OF FILE SEGMENTS

DMAP provides information on the locations of segments for individual files. It is not
intended to be a general file listing utility, but rather to be an aid in checking specific
file residence.

If you are an individual nonprivileged user, DMAP is used to list the segments of your files
that are resident on a particular pack (PN=parameter). If a device is to be removed from
the system configuration, you can list the files that would be affected by this and move
them elsewhere. If you know the device sets to use for the DS=parameter, all of the files
on the set are listed.

If you are a privileged user, DMAP lists all file segments on the pack(s) or device set(s)
specified. This listing can be sorted several ways to provide information on the overall
pattern of disk usage, on the amount of fragmentation on files, or on the distribution of
your files.

For allocated space, the file names, type, owner, PFI entry offset, date of origin, date of
last access, highest byte written, length, device set name, pack name, and sectors allocated
are listed in the output. DMAP traces the allocation pointers to other devices, if
necessary, to obtain this information. 1If the information is not available because a device
is down, it is indicated as an orphan segment, and the pack name that is unavailable is
indicated in the listing. If the PN=parameter is selected and the file has segments on
other devices that were not selected, an asterisk is appended to the pack name.

DMAP expects PFlnn (where nn is the pack number) files to be public. If they aren”t, DMAP
will fail when it encounters the pack where the associated PFlan file is non-public. The
PFlnn file may have been made non—public for performance reasons. Check with your site”s
system”s analyst if this occurs.

Figure 4-14 shows the DMAP control statement format.

DMAP, |PN=packname| ,LO=options,LIST=1fn
DSET=devset

PN=packname List of pack names for which disk space usage is to be listed.
If the DS parameter is not specified, PN= is required. *
specifies all packs.

DSET=devset List of device sets for which disk space usage is to be listed.
If the PN parameter is not specified, DS= is required. *
specifies all device sets.

LO=options options specifies the list of primary and secondary sort keys
for the output. All entries are sorted on first (primary) keys;
then the second key (if present) is used to sort and split the
listing into smaller groupings.

D The file information is printed as a function of
position on disk.

A The file information is printed for each file, and
the files are listed alphabetically.

U The file information is listed by user number. For
each user number, the files are listed as for the A
or D option.

Default is LO=A. Permissible options are D, A, U, AD, AU, UD,
and UA.

LIST=1fn This parameter specifies the file to which the output listing is
written. The default file name is OUTPUT.

Figure 4-14. DMAP Control Statement Format

l 4=34,2 60459410 J

PACK = PACK 37
DAU VALUE = 4
DFS INDEX = OCFC

(OCFC) = 0D3C371709180037
(OCFD) = 000100C800010129
(OCFE) = 0001029C000102A2
(OCFF) = 00010C5D00010CEl

PACK = PACK37

DAU VALUE = 4
DFS INDEX = 0OD3C
(0OD3C) = 0D5837370CFC0037
(0D3D) = 00010DB800010ODCY
(OD3E) = 00010E2300010FB6
(OD3F) = 00010FE400011544
Option Description
TY The file type (physical data or virtual code)
PFIADR The bit offset of the entry for the file into the PFI
DORG The date of file creation
DOLA The date of last access (the most recent attachment with write,
append, or modify access)
HBW The highest byte written to the FLEN is the allocated file
length in 512-word blocks
DSET The device set name
PN The pack name

If a file was created prior to the system 2.2 release, an asterisk follows the name of
the file.

If a file has been marked purge-only, two asterisks will immediately follow the file
name. This file could have been created before or after the 2.2 release.

60459410 H } 4-35

® 4-36

DROP - REMOVE A JOB FROM A QUEUE

The DROP statement allows you to drop user-owned executing jobs or queued files.

(User-owned executing jobs have the same user number as that under which the DROP command is
executing.) If the DC=q parameter on this control statement is not specified, only the
input queue is searched. You cannot drop the job that is executing the DROP command nor can
it drop an interactive session. You may use either jdn or JN=jobname to specify the job.

If the jdn or jobname specified is in the input queue, the associated input file is evicted
and an output file with the same jdn is created containing the following dayfile message:

JOB EVICTED FROM INPUT QUEUE BY USER.

If the jdn or jobname is in the execute queue, the job”s currently executing task is
interrupted and the following message is written to the job dayfile:

JOB DROPPED BY USER.

Reprieve is invoked if enabled and the job goes to EXIT processing. If the jdn or jobname
is in the output queue, the associated output file family is evicted without notice. If
KILL is specified and the job specified by the jdn or jobname is in the execute queue, the

job is dropped without EXIT processing and the following message is written to the job
dayfile:

JOB KILLED BY USER.

If more than one queue is specified, the queues are searched in the following order: input,
execute, and output.

60459410 H

P

Figure 4-14,1 shows the format of the DROP control statement.

jdn
DROP, { JN=jobname! ,KILL,DC=q.
JN:*

jdn . Job descriptor number (1 through 2047). This parameter is
mutually exclusive with the JN parameter. The job specified by
jdn is dropped from the queue(s) specified by q. Either the jdn
or JN parameter must be specified.

JN=jobname Job name (or file name). This parameter is mutually exclusive
with the jdn parameter. The job(s) whose job name is jobname is
dropped from the queue(s) specified by q.

JIN=* Drop all user-owned queue files in the queue(s) specified by q.
This parameter is mutually exclusive with the jdn parameter.

KILL This parameter is optional and applies only when DC=E. If
specified, the job specified by jdn or jobname is terminated
without EXIT card processing (that is, the job is killed).

DC=q Specifies the queue(s) where the job(s) specified by jdnm,

jobname, or * resides. This parameter is optional. If q is not
specified, only the input queue is searched. Multiple queues
are searched by specifying combinations of I, E, and O or by
specifying *, where:

Input queue

Execute queue

Output queue

All queues are searched

*O =

Figure 4-14.1., DROP Control Statement Format

If the DROP statement executes successfully, the following message is issued for each job
that is dropped:

JOB jobname WITH JDN = jdn WAS DROPPED FROM queue QUEUE

If the DROP statement did not complete successfully, one of the following error messages is
issued:

SYNTAX ERROR

SYSTEM MESSAGE #fc ERROR, RCODE = #rc, SSCODE = f#ss
NO USER OWNED JOB FOUND WITH JDN = jdn

NO USER OWNED JOB FOUND WITH JN = jobname

CAN NOT DROP INTERACTIVE JOB

JOB CAN NOT DROP ITSELF

60459410 H 4-36.1

DUMPF - ARCHIVE FILES

I The DUMPF control statement archives permanent files or queue files. File archiving is the

process of copying permanent files to backup storage and reloading the backup copies if
needed., File archiving preserves a backup copy in the event that the original copy is
inadvertently destroyed.

A nonprivileged user can archive only attached private or pool files. A privileged user can
archive all permanent files stored on the CYBER 200 system except attached private files and
files belonging to user numbers 1 through 15. A system user can list information about the

| 1/0 queues. Neither privileged or nonprivileged users can archive the system user directory
or files with the following reserved names:

JOBFILE
Q5DAYFLE
Q6DLFEOT
Q5JOBFLE
Q5JRTHRF
Q6DLFTRC
Q5SDFLEN
Q6OUTPUT
*AF

*AF2
HISTRY

Files with reserved file names can be archived by switching or copying them to a nonreserved
file name and then archiving them. Similarly, files under user numbers 1 through 15 can be
archived by switching or copying the files to a different user number.

The access directory for a file is saved
only if the user archiving the file is
privileged. The access directory is not
saved when a nonprivileged user archives the
file. Therefore, when a file archived by a
nonprivileged user is reloaded, its access
permissions must be redefined.

DUMPF executed in update mode (SELECT=U)
should be used to dump to tape and not to
mass storage. If dumping to mass storage
during production hours, the system table
FILEI may get full and impact the operation
of the system.

The DUMPF control statement bypasses dumping permanent files if either of the following
situations exists: i

e Any user has the permanent file attached with write, modify, or append access
permission set.

® Any user has a pool attached and the pool file is currently open with write, modify,
or append access permission set.

DUMPF can execute concurrently with other tasks, including other DUMPF tasks.

4-36.2 60459410 H

DUMPF executed with the DEVICE=0 parameter allows privileged and nonprivileged users to
purge files without dumping the permanent file to a device. Using the DATE, SELECT, and
TIME parameters along with DEVICE=0 allows users to purge files that have or have not been
modified, accessed, created, or expired within a specified date and/or time period.

The DUMPF control statement format is shown in figure 4-15. All parameters except the first
can appear in any order. The first parameter, if specified, must be a list of file names.

The first format shown in figure 4-15 is used when the RHF application, DLF, dumps the files
to a remote system. The second format is used when the files are archived on CYBER 200 mass
storage or tapes.

If a production file is dumped by any user
other than the site security administrator
(refer to chapter 7 of the Installation
Handbook), the file will not retain its
production status when reloaded.

60459410 H 4-36.3

Format for Front—End File Archiving

DUMPF,1fn-1list ,USER=userno,PO0L=plist ,DSET=devset,PACK=packlist ,ACCOUNT=alist,
JCAT=jcatlist,LID=1idlist,SELECT=opts,DATE=mmddyy,TIME=hhmm, LO=x,LIST=1fn/len,
ST=stid,SI=setid, |JCS=strings .

INPUT=1fn . ’ '

Format for CYBER 200 File Archiving

DUMPF,1fn~1list,USER=userno,POOL=plist ,DSET=devset ,PACK=packlist ,ACCOUNT=alist,
JCAT=jcatlist,LID=1idlist,SELECT=opts,DATE=mmddyy,T IME=hhmm,VERIFY=pt,LO=x,
LIST=1fn/len,DEVICE=device,VSN=id=-1ist ,TF=tf,DENSITY=den,RP=days,IU=iu.

File Specification Parameters

lfon-list List of 1 through 128 file names separated by commas. The specified
files are assumed to belong to any or all user numbers specified by
the USER parameter and/or any or all pools specified by the POOL
parameter. If omitted, all files belonging to userno and/or plist
are archived. If SEL=0 is specified, lfn-list identifies the
last-group-files(s) of the output—file-~family(s) to be archived. 1If
SEL=0 is specified and lfn—-list is omitted, DUMPF archives all
output-file-families.

USER=userno Private file owners.
For a nonprivileged user:
userno User number of the nonprivileged user.

For a privileged user:

u-list List of 1 through 128 user numbers separated by
commas .
* All file owners, private, pool, and public.

For a system user who has specified SEL=I or SEL=0:

u-list List of 1 through 128 user number(s) that queued the
files (original owner). If omitted, DUMPF will
archive the queue files of all user numbers.

If USER=userno is omitted and the POOL parameter is not specified,
DUMPF archives files belonging to the user number under which DUMPF

was run.
POOL=plist List of 1 through 128 pool names separated by commas.
DSET=devset Allows files to be dumped to a specific device set. devset is a

list of 1 through 128 device sets (DVSTnn) separated by commas. If
more than one device set is specified, the device sets will be used
in the order they appear in the parameter list, with the first
being filled before the next one is used.

Figure 4-15. DUMPF Control Statement Format (Sheet 1 of 5)

60459410 J 4=37 4

File Specification Parameters

PACK=packlist Allows files to be dumped on a pack basis. packlist is a list of 1
through 128 pack names (PACKnn) separated by commas. Only those
files beginning on a specified pack are archived. Those that
continue from another pack are not archived. i

ACCOUNT=alist For a nonprivileged user, alist is a list of one to seven account
identifiers separated by commas. You must be validated for all
specified account identifiers in order to archive files with these
accounts., For a privileged user, alist is a 1list of 1 through 128
account identifiers separated by commas. Only files with the
specified accounts are archived.

JCAT=jcatlist List of 1 through 64 job categories separated by commas. This
parameter is allowed only if SEL=I or SEL=0 is specified and
applies only to the input queue. If this parameter is omitted,
files belonging to all job categories in the input queue are
archived.

LID=1lidlist List of 1 though 128 destination LIDs for input or output files.
This parameter is allowed only if SEL~=I or SEL=0 is specified. If
this parameter is omitted, all queue files are archived regardless
of their destination LIDs.

SELECT=opts File characteristics of all files dumped (any combination of the
following letters without separators). A file must meet all
characteristics specified in order to be dumped.

A Files accessed on or after the date and time
specified by the DATE and TIME parameters. An
access is defined as an open.

C Files created on or after the date and time
specified by the DATE and TIME parameters.

I Files in the input queue. Only the system user is
allowed to select this option. The I option is
mutually exclusive with the PO parameter.

M Files modified on or after the date and time
specified by the DATE and TIME parameters.

N Reverses the meaning of the A, C, or M options. For
example, NC specifies files not created since the
date and time specified. This option may appear
anywhere in the string but always reverses the
meaning of all characters specified.

Figure 4-15. DUMPF Control Statement Format (Sheet 2 of 5)

4-38 : 60459410

File Specification Parameters

0 Files in the output queue. Only the system user is
allowed to select this option. The O option is
mutually exclusive with the PO parameter.

X Files expired. A file expires when more days have
passed since its creation date than the number of
days in the retention period for the file.

P Purge the file after successfully dumping it. If
its dump is not successful, the file is not purged.
If the DEV=0 parameter is specified, files are
purged and not dumped. Only the pool boss or a
privileged user can purge a pool file.

U Indicates update mode. Only files created or
modified since the last update dump are selected.
This option is mutually exclusive with other SELECT
options or date and time parameters. Only a
privileged user can use this option.

If SELECT=opts is omitted, DUMPF assumes no options.

DATE=mmddyy Date used by the A, C, and M options on the SELECT=opts parameter.
The first two digits of the date indicate the month, the next two
digits the day of the month, and the last two digits the last two
digits of the year.

If DATE=mmddyy is omitted, DUMPF uses the current date.

TIME=hhmm Time used by the A, C, and M options on the SELECT=opts parameter.
hh is the hour, based on a 24-hour clock. mm is the minute in the
hour.

If TIME=hhmm is omitted, DUMPF uses midnight.

Verification Parameters

VERIFY=opt Verify the integrity of the archival medium just written.
Mis—-compares are noted in the dayfile and verification is halted
after a threshold of errors is reached. If any error and if SEL=P
was selected, no files will be purged by DUMPF. The extent of the
verification is determined by the opt value as follows:

Q Quick verification. The archival medium is scanned,
selected fields are checked for consistency, and the
archival medium contents are compared with the list
of files DUMPF dumped.

F Full verification. The quick verification is
performed plus the data of each file is read, to
ensure it is readable. The length of each file read
is compared with the length of the file dumped.
However, a bit for bit comparison of files is not
performed. This option may take 2 - 30 times as
long (or longer) as the Q option depending on the
size of the files and the archival medium involved.

If this parameter is not specified, no verification is performed.

Figure 4=15. DUMPF Control Statement Format (Sheet 3 of 5)

60459410 J 4-38.1

Listing Parameters

Lo=x Audit information required.
F Full audit.
P Partial audit.

If LO=x is omitted, DUMPF writes partial audit information.

££§T=lfn/1en Listing file specifications.

1fn File name (one to eight letters or digits, beginning
with a letter). If 1fn is omitted, DUMPF uses file
OUTPUT.

len File length in 512-word blocks. If len is omitted,

the file length is #40 blocks.

For Front-End File Archiving Only

ST=stid RHF logical identifier of the other system (three ASCII
characters). This parameter is required.

Sl=setid Set identifier of the archive storage on the other system. This
parameter is required. It must be a name of one to six letters or
digits beginning with a letter.

On NOS/BE, the SI parameter is the multifile set name and must be
the same name as specified on the VSN directive. For the IBM
remote host, the SI parameter is ignored.

JCS=strings List of one to ten text strings sent to the other system. Each
string must be delimited by double quote (') characters. Strings
within the list are separated by commas.

You cannot use this parameter if you use the INPUT parameter. If
both JCS and INPUT are omitted, then I=INPUT is assumed.

INPUT=1£fn Name of the CYBER 200 file containing the text strings to be sent
to the other system. A text string in the file must appear as it
would if entered on the JCS parameter without the " delimiters.
You cannot use this parameter if you use the JCS parameter. If

both JCS and INPUT are omitted, then I=INPUT is assumed.

For CYBER 200 File Archiving Only

The following parameters are ignored if
specified with RHF file archiving parameters.

Figure 4-15. DUMPF Control Statement Format (Sheet 4 of 5)

-® 4-38,.2 ‘ 60459410 J

DEVICE=device

VSN=id-list

Device type used to store archived files.

MS Mass storage.

NT Magnetic tape.

0 No device to assign (mutually inclusive with
SELECT=P).

If DEVICE=device is omitted, the installation defined default type
(released value, MS) is used. When DEVICE=0 is supplied, the files
that are selected are purged without being archived. The VSN
parameter cannot be specified if DEV=0,

Archive storage device identifier (a list of one through six device
sets in the format DVSTnn if DEVICE=MS, or a list of 1 to 255 tape
volume VSNs if DEVICE=NT). VSN is a required parameter if DEVICE
is MS or NT. If DEVICE=0, the VSN parameter is not allowed.

If the listed devices are not sufficient, the operator must assign
additional devices.

For CYBER 200 File Archiving Only

TF=tt

DENSITY=den

RP=days

I=iu

Tape format (for tapes only):
v Variable block size format with block size set to 8K.
LB Large block size format,

If TF=tf is omitted, DUMPF defaults to TF=V. The LB format is the
format used by pre-2.3 DUMPF. This parameter is mutually exclusive
with DEV=MS.

Recording density (for tapes only):
PE 1600 cpi. '
GE 6250 cpi.

If DENSITY=den is omitted and DEVICE=NT is specified, the
installation-defined default density (released value, 6250 cpi) is
used. If the density specified or the default density does not
match the density on the tape, processing continues with the
density specified on the tape.

Retention period in days (1 through 999).

If RP=days is omitted, the default set by an installation parameter
is used.

Inhibit unload option indicating whether the system unloads a tape
volume when the utility is complete. This applies to tape files
only.

Y Does not unload tape volume.

N Unloads tape volume.

If IU=iu is omitted, N is used.

60459410 J

Figure 4-15. DUMPF Control Statement Format (Sheet 5 of 5)

4=39

VSN=id-list Archive storage device identifier (a list of one through six device

sets in the format DVSTnn if DEVICE=MS, or a list of 1 to 255 tape
volume VSNs if DEVICE=NT). VSN is a required parameter if DEVICE
is MS or NT. 1If DEVICE=0, the VSN parameter is not allowed.

If the listed devices are not sufficient, the operator must assign
additional devices.

For CYBER 200 File Archiving Only

TF=tf Tape format (for tapes only):
v Variable block size format with block size set to 8K.
LB Large block size format.

If TF=tf is omitted, DUMPF defaults to TF=V. The LB format is the
format used by pre-2.3 DUMPF., This parameter is mutually exclusive
with DEV=MS.

DENSITY=den . Recording density (for tapes only):
PE 1600 cpi.
GE 6250 epi.

If DENSITY=den is omitted and DEVICE=NT is specified, the
installation-defined default density (released value, 6250 cpi) is
used., If the density specified or the default density does not
match the density on the tape, processing continues with the
density specified on the tape.

RP=days Retention period in days (1 through 999).

If RP=days is omitted, the default set by an installation parameter
is used.

4-40

Figure 4-15., DUMPF Control Statement Format (Sheet 5 of 5)

60459410 H

n

SPECIFICATION OF FILES TO BE ARCHIVED

The set of files that DUMPF archives can be specified by name or by attributes. The set of
files must have all the attributes specified.

The USER and POOL parameters specify file ownership, the DSET and PN parameters can specify
file residence, and the SELECT, DATE, and TIME parameters can specify file usage and age.

A maximum of 256 private files and 256 files per pool can be dumped.

No more than 2048 private files and/or pool
files can be dumped at one time. If you need
to dump more than this number, do two or more
dumps, using a different file specification
for each. For example, specify a different
device set for each dump, or dump users and
pools separately.

If no file names are specified and the USER, POOL, ACCOUN, and SEL=I or SEL=0O parameters are
omitted, DUMPF archives files belonging to the user number under which DUMPF is executed
(provided that SEL=I or SEL=0 is specified).

Table 4-2 in this chapter summarizes the interaction of the USER and POOL parameters.

If a file cannot be archived, DUMPF returns an appropriate message and continues processing
with the next file.

Files archived are listed in the user dayfile along with the user number or pool to which

the files belong. If two or more consecutive files belong to a single user number or pool,
only the first file lists the user number or pool.

60459410 H 4-40.1/4-40.2

5

ARCHIVE FILE FORMAT

The same archive file format is used whether the file is stored on a remote system or on the
CYBER 200 system.

The first block of each archived file contains the data needed to reload the file. The
archived file format is shown in figure 4-16.

Directory Format

T ENTRIES
MAXENTRY
PREAMBLE DDUSERNO
i DDPACKID
PFILE,
FIRST ENTRY FILENAME,
USERNO4
* UNUSED
°
°
°
°
REMAINING ENTRIES PFILE,
FILENAME |
USERNO,
l UNUSED,,
where: ENTRIES — number of entries in the directory

MAXENTRY — maximum number of entries in the directory (based on size of
directory file)

DDUSERNO — user number
DDPACKID - pack identification

PFILEi — pseudo file name
FILENAME; — original logical file name
USERNO; — user number of file
UNUSEDi — not used
Dumped File Format Selected PFI fieldsT ,
PNAME; Contents of FILENAME;

fFor privileged users, the PFl image and file extension entry for FILENAME; are also included.

Figure 4-16., Directory/Dumped File Format

60459410 E 4=-41

The information in the first block of each archived file includes the contents of selected
fields in the permanent file index entry for the file.

If you are a privileged user and you archive the file, the first block also contains the
following information:

e A copy of the unformatted permanent file index (PFI) entry as it exists after DUMPF
opens the file

® A copy of the permanent file index extension entry if an access directory exists for
the file

The access fields in the permanent file index entry are updated when DUMPF opens the file.
Therefore, the access field information differs, depending on whether you are or are not
privileged. This means that if you specify the A option, the last access date and time used
differ, depending on whether you are or are not privileged.

ARCHIVING TO A FRONT-END SYSTEM

If the RHF application program is present on the system, it interprets the ST, SI, JCS, and
INPUT parameter specifications on the DUMPF control statement. DUMPF uses the ST parameter
specification to determine the remote system on which the file copies are stored. The SI,
JCS, and INPUT parameter specifications determine how the file copies are stored on the
remote system.

DUMPF passes a text string to the remote system before it sends the file copies to be
stored. The string is specified on the JCS parameter or in the file specified on the INPUT
parameter. The required content of the text string depends on the RHF software in the
remote system. For more information, refer to the RHF documentation for the remote system.

ARCHIVING TO CYBER 200 MASS STORAGE

When archiving to CYBER 200 mass storage, use the DEVICE and VSN parameters to specify the
disk packs on which the file copies are stored.

The VSN parameter lists the device set identifiers of the device sets to be used. The
device sets are used in the order listed on the parameter. DUMPF sends a message to the job
dayfile or to the interactive terminal when it switches device sets. If DUMPF exceeds the
specified sets, the operator is prompted for additional device set names.

When DUMPF archives files on CYBER 200 mass storage, the archived file copies are unattached
private files. DUMPF maintains a directory file on each device set for the files dumped to

that set. The name of the directory file is DVSTnn0OO where nn is the archive storage device
identifier (device set number). The directory contains the file names of all archived files
for this user on the device set. The directory format is shown in figure 4-16,

If, dufing DUMPF processing, a directory entry already exisfs that has the same name and
owner as a file to be archived, the existing archived file with that name and owner is
destroyed. DUMPF copies the file to be archived and creates a new directory entry.

The name of each archived file (called a pseudo file) is specified as DVSTMMNN. mm is the
archive storage device identifier. nn is the file sequence number in hexadecimal represen—
tation. If the sequence number exceeds #FF, the sequence number begins overwriting the
first part of the name (for example, file number #2F3 would be archived on DVST13 as
DVST12F3).

4l 2 60459410 J

Using the DEVICE=0 parameter, both privileged and nonprivileged users may purge selected
files without having to dump the permanent files to a device first.

ARCHIVING TO CYBER 200 ON-LINE TAPES

To archive files on CYBER 200 on-line tapes, specify the DEVICE=NT parameter on the DUMPF

statement. Also, specify the VSNs of the tape volumes on the VSN parameter. Optiomnally,

you may specify the recording density on the DENSITY parameter and the retention period on
the RP parameter. If the density of the tape does not match that specified by the density
parameter, DUMPF uses the density of the tape and issues an appropriate error message.

The tape volumes specified on the VSN parameter are used in the order listed on the
parameter. DUMPF sends a message to the job dayfile or to the interactive terminal when it
switches tape volumes.

DUMPF writes the archived files as a multifile set. It generates a unique 17-character file
identifier for each file in the set. Each file identifier generated has the following
format:

yfilenameusername

y File owner (U for private file, P for pool file)

filename File name, right-justified with zero character fill

username ASCII user number or pool name, right-justified with zero character fill

For example, if a private file named MYFILE and belonging to user 012306 1s archived, its
file identifier is UQOMYFILE00012306.

For the 2.3 release, the default tape format used by DUMPF was changed from LB to V with a
block size of 8K. This was done to enhance reliability for both writing and reading on-line
tapes. To maintain compatibility with pre-2.3 releases, a tape format parameter has been
added to both DUMPF and LOADPF, Under normal use, the default format of V should be used.
However, if you plan to create a tape that must be accessible to a pre-2.3 system, specify
TF=LB.

DUMPF OUTPUT

The IO parameter on the DUMPF control statement determines whether DUMPF produces a full or
a partial output listing. A full listing produces all of the headings described next, while
a partial listing contains only the first 13 headings. A full listing does not exceed 132
characters, excluding the carriage return, and a partial listing does not exceed

80 characters, excluding the carriage return. Dates appear as month, day, and year. Time
appears in a 24-hour format. All values are decimal unless noted otherwise.

60459410 G 4-43

The following are the column headings used in a full DUMPF listing and the information given

under each heading.

4=44

Heading

VSN

FSN
NAME

OWNER

TYP

RT

BT

ACS

EXT
SL

DEVICE

DSET
FLEN
FACT
DORG
TORG
DOLA
TLR

DOLM
TOLM

EXP

Description

Volume serial number: this field is printed only the first time a file is
dumped to a VSN or when the report goes to a new page.

File sequence number: hexadecimal count of files dumped.

File name.

File owner: individual user number, public user number (0), or pool name.
If SEL=I or SEL=0 is specified, then the user number of the original file
owner is listed.

File type: wvirtual code (VC) or physical data (PD).

File category: batch input file (B), input queue file (1), output queue
file (0), user file (U), system—generated drop file (S), or not defined

(N).

Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), control word (W), system block (B), or lower CYBER (L).

Blocking type: character count (C), internal (I), or record count (K).
Access permission set: read (R), write (W), execute (X), append (A)
and/or modify (M) permissions, no permissions (NONE), or purge—only
(PURGE). DUMPF lists the owner”s access permission set for private files
and the general access permission set for pool and public files.

File allocation: segmentable (S) and/or extendable (X).

Security level: 1 through 8.

Device name of mass storage file. An asterisk following the device name
will indicate that a portion of the file resides on another disk.

Name of device set.

Number of 512-word blocks in file.
Accounting information.

Creation date (date of origin).
Creation time (time of origin).
Date of last file access.

Time of last file access.

Date of last file modification.
Time of last file modification.

Expiration date (creation date plus retention period).

60459410 H

If SEL=I or SEL=0 is specified, the TYP column is deleted and the following column headings
replace ACS and EXT:

Heading Description
LID Destination LID for output and/or input queue files.
JCAT Job category of input queue files. For all other file types, this field

is left blank.

Figure 4-17 shows an example of an DUMPF output listing as produced by the following control
statement:

DUMPF,U=*, AC=ACCTNO1 ,ACCTNO2 ,ACCTNO3,DEV=NT,VSN=CY2091,CY2088 ,LO=F.

60459410 H b=bh 1 /b4—44 2

O 01Y65%09

Sh=%

CYBER 200 DUMPF DMP2219 -USER 14000 06/17/86 13.29.21
VSN FSN NAME OWNER TYP FC RT BT ACS EXT SL DEVICE DSET FLEN FACT DORG TORG DOLA TIR DOLM TOLM EXP

CY2091 1 TRACE 10955 PP U R C XMARW X 1 PACK3B DVST3B 16 ACCTNO3 028685 931 050885 948 020885 932 031085
2 CF639B 10955 PP U R C XMARW X 1 PACK3B DVST3B 80 ACCINO3 020685 927 020685 931 020685 927 030885

3 FI70249B FINDROP PP U R C XMARW X 1 PACK3B DVST3B 80 ACCINO3 102284 1357 112184 1321 102284 1357 112184

4 MAILIST 09151 PP U R C RW X 1 PACK3B DVST3B 16 ACCINO3 032985 927 060785 1014 060785 1007 042885

5 V3 09151 PD U R C XMARW X 1 PACK3B DVST3B 16 ACCINO3 072484 1315 052985 846 052985 846 082384

6 RENAME BOBPOOL V© U U ¢ X X 1 PACK3B DVST3B 50 ACCTINO3 061385 1250 061385 1251 061385 1250 071385

7 DELSRC 10011) U R C RW X 1 PACK3B DVST3B 16 ACCINO3 052485 1451 052985 1046 052885 923 062385

8 PFDL BOBPOOL V© U U ¢ R X 1 PACK3B DVST3B 82 ACCINO3 051585 1503 061685 2356 051585 1503 061485

9 DIAG22 9151 PD U R C XMARW X 1 PACK3B DVST3B 16 ACCTNO3 031185 1031 061785 812 061285 833 041085

A C2700L 14000 PP U R C XMARW X 1 PACK3B DVST3B 16 ACCTNOL 053185 618 053185 618 053185 618 063085

B C2700TS 14000 VC U U C XMARW SX 1 PACK3B DVST3B 320 ACCTINOl 053185 618 053185 618 053185 618 063085

C CEBIN 10955 PP U R C XMARW X 1 PACK3B DVST3B 32 ACCTNO3 041285 943 050985 1002 041285 943 051285

CY2088 D MINK POOLVRF VC U U C XMARW X 1 PACK3B DVST3B 368 ACCINO3 041285 947 041585 933 041285 947 051285
E CG520L 14000 PP U R C XMARW X 1 PACK3B DVST3B 16 ACCINOL 053185 624 053185 624 053185 624 063085

F CG520TS 14000 VC U U C XMARW X 1 PACK3B DVST3B 320 ACCTNOL 053185 624 053185 624 053185 624 063085

10 CONNECT BP22 VO U U ¢ X X 1 PACK3B DVST3B 64 ACCINO3 061085 1809 061085 1810 061085 1809 071085

11 DISCONT BP22 V© U U ¢ R X 1 PACK3B DVST3B 64 ACCINO3 061085 1809 061085 1811 061085 1809 071085

12 DNAD 9151 V© U U ¢ X X 1 PACK3B DVST3B 128 ACCINO3 061185 1452 061185 1456 061185 1452 071185

Figure 4-17. DUMPF Output Example

EDITPUB - ADD OR DESTROY PUBLIC FILE e

The EDITPUB control statement is valid only for privileged user numbers. It adds or
destroys a public file.

The files specified on the N parameter (the files to become public files) must be attached
private or pool files. Only the pool boss can issue an EDITPUB statement for a pool file.

The EDITPUB control statement format is shown in figure 4-18.

D=1lfn-1list
EDITPUB, L ,N=1fn-1ist,P=1fn-1ist,ACCESS=acs,VRI=index.

D=1fn-1list List of public files to be destroyed (1 through 16 names, separated
by commas).

L Files to be destroyed are specified interactively., The L parameter
can be specified at an interactive terminal only.

N=1fn-list List of files to be added to the public file list without
privileged status (1 through 16 names, separated by commas).

P=1fn-list List of files to be added to the public file list with privileged
. status (1 through 16 names, separated by commas).

ACCESS=acs Access permission set for each file specified by the N and P
parameters (any combination of the following letters without
separators).

R Read permission
1Y) Write permission
X Execute permission
A ‘Append permission
M Modify permission

If ACCESS=acs is omitted, EDITPUB assumes ACCESS=RX.

VRI=index Index into the Variable Rate Table in the range 1 through 255, for

public files being added with the call. If VRI=index is omitted,
the system uses an index of O.

Figure 4-18. EDITPUB Control Statement Format

4-46 60459410 E

EDITPUB cannot destroy a file open to a task. If it cannot destroy a file, it returns an
error message to the job dayfile or interactive terminal.

If a file that is being made public has the same name as an existing public file (that is,
if a file is being replaced), an EDITPUB statement can both destroy the existing public file
and add the new public file, For example, to replace public files X and Y, the following
control statement is appropriate:

EDITPUB,D=X,Y,N=X,Y.
When the utility is called with the L parameter from an interactive terminal, it displays

the name of each public file in turn and waits for one of the following terminal user
responses:

User Enters Result
D Destroy file
Carriage return Retain file
STOP Terminate utility

VARIABLE RATE INDEX SPECIFICATION

If the variable rate index (VRI) parameter is used, at least one of the N or P parameters
must be used. 1In this case, all files being made public in this control statement must be
controllees, and the VRI parameter applies to all. Files made public using the VRI
parameter do not retain read or write access.

If both the L and VRI parameters are used from an interactive terminal and the user response
indicates that any file is to be retained, the VRI for that file is not reset to the VRI
parameter value. The VRI file index entry for any file is O until modified by a VRI
specification on an EDITPUB statement.

60459410 E 4-47

EXIT - SET ABNORMAL TERMINATION PATH

The EXIT control statement establishes the point at which the batch processor continues job
processing after a task returns an abnormal termination code.

The EXIT control statement is valid only in a batch job. It is executed directly by the
batch processor.

The EXIT control statement format is shown in figure 4-19, More than one EXIT control
statement can appear in a job.

EXIT.

Figure 4-19. EXIT Control Statement Format

When abnormal job termination is initiated, (refer to Abnormal Job Termination in chapter 3
of this manual), the batch processor searches subsequent statements and continues statement
processing with the control statement following the first EXIT or PROCEED encountered. If
no EXIT or PROCEED control statement exists, job processing ends.

If the EXIT statement is encountered during normal job advancement to the next control
statement, job processing ends normally at the EXIT statement.

The threshold value is set to 255 when an EXIT or PROCEED control statement establishes the
execution path.

If control transfers to the path established by an EXIT or PROCEED control statement because
the job time limit is reached, no time is available for user job tasks after the EXIT or
PROCEED statement. A short amount of time is available to the job for use by the batch
processor.

4-48 60459410 G

FILES - LIST FILE INFORMATION

The FILES control statement lists information about files.

The PRIVATE, POOL, and PUBLIC parameters indicate the ownership category of the listed
files. The USER parameter specifies the owner of the private permanent files listed.

The names of local and attached private files can be specified either after the FILES verb
or on the PRIVATE parameter. The names of unattached private files must be specified on the
PRIVATE parameter.

The following are examples of FILES statements.

Example 1:

The following statement lists information about all local and private files attached to a
job, including files attached but not owned by you.

FILES.
Example 2:
The following statement lists information about all public. files, all private files owned by
you (including local, attached, and unattached files), and all pool files belonging to the
attached pool MYPOOL.

FILES,PUBLIC=* ,PRIVATE=* ,POOL=MYPOOL.

Example 3:

The following statement lists information about the private permanent file named HERFILE,
owned by user number 012306.

FILES,HERFILE,USER=012306.
Example 4:

Either of the following statements lists information about all files belonging to user
number 012306 that you can access.

FILES,USER=012306.
FILES,PRIV=%* ,USER=012306.

The FILES control statement format is shown in figure 4-20. All parameters are optional
and, with the exception of the initial file name list, can appear in any order.

60459410 E 4-49

FILES,1fnl-1ist ,PRIVATE= {lfnZ—list] ,PUBLIC= {1fn3-list] ,POOL=pool,lfn4-1list,
* *
USER=userno,LIST=outlfn.

1fnl-list List of local and attached private files (1 to 255 file names
separated by commas).
PRIVATE= {lfnZ—list}Private files (local, attached, or unattached).
* :
1fn2-1list List of 1 to 255 file names separated by commas.
* All private files attached to the user”s jobs.
PUBLIC= {1fn3—list} Public files.

*
1fn3-list List of 1 to 255 file names separated by commas.

* All public files.
POOL=pool, Pool and list of files belonging to the pool (pool name followed by
1fn4-list 1 to 255 file names separated by commas). A pool name specified

without a list of files specifies all files belonging to the pool.
More than one POOL parameter can be specified on the statement.

USER=userno Owner of the specified private permanent files (six-digit user
number). The caller must have access to the files.

This parameter is provided to list files owned by another user to
which the caller has access. If the caller”s user number is
specified and private permanent files are to be listed, only that
user”s private permanent files with general access is listed.

If USER=userno is omitted and private files are to be listed, the
FILES output includes private files, regardless of access
permissions.

LIST=outlfn Optional name of the file on which output is written.

If LIST=outlfn is omitted, the default output file depends on
whether FILES is executed within a batch job or as an interactive
task. Batch job output is written on file OUTPUT; interactive task
output is displayed at the terminal.

Figure 4-20., FILES Control Statement Format

4-50 60459410 G

FILES OUTPUT

FILES lists information for the files it finds. It then lists the names of the specified
files it did not find, files to which you do not have access, or those whose security level
is greater than the security level of the job or interactive session. These files are
listed under the following heading:

FILES NOT FOUND

File information for the files found is listed in alphabetical order by file name. File
information for files with the same name is listed in the following ownership category
order: private local, private permanent, pool, and public.

If you attach the same permanent file in more than one job, all information columns are
listed for the first job only. The access perinission (ACS) and the job descriptor number
(JDN) are the only columns listed for your subsequent attaches of that file. For example,
see the file listing LVIRT22 in figure 4-21.

NAME DUP ACS LEN JDN ORI .DATE OWNER TYPE DT FC BT RT FO
2FILES XRW 0000256 471 09/12/84 *LOCAL VC MS S C U S
ACWI* XMARW 0000004 1465 09/12/84 *PERM PD MS B C R S
C1955 XMARW 0000001 07/25/84 *PERM PO MS U C R S
CYBIL XMARW 0000994 04/28/84 *PERM VC MS U C U S8
CYBSLIB XMARW 0000800 04/28/84 *PERM PD MS U C R S
LVIRT22 XR 0000208 1465 08/23/84 *PERM PD MS U C R S
LVIRT22 XR 471
Q5RHFTRC XMARW 0000008 04/26/84 *PERM PD MS U C R S
RHFXREF XMARW 0001968 03/23/84 *PERM PD MS U C€C R S
SOSUP XMARW 0000008 07/26/84 *PERM PD MS U C R S
SPSUP XMARW 0000004 07/26/84 *PERM PD MS U C R S
TOOLUP XMARW 0000004 08/09/84 *PERM PD MS U C R S

Figure 4-21. FILES Sample Output

If the USER parameter is specified, file information for files owned by another user is
listed under the following heading:

FILES OF ALTERNATIVE USER

File information is listed under the following column headings:

Heading . Description

NAME File name. An asterisk is appended to the file name if it is a production
file.

DUP Duplicate file name flag. An asterisk in this column indicates that at

least one other file exists with the same name and owner.
ACS Access permission set of the user: read (R), write (W), append (A),

modify (M) and/or execute (X) permissions, no permissions (NONE), or
purge—only (PURGE).

60459410 H 4-51

Heading Description

LEN Actual length of each segment of a mass storage file (decimal number of
512-word blocks). Partial files (when not all of the files are available)
are indicated by a minus sign to the right of the LEN field.

- JDN Job descriptor number of a blank field. It indicates an unattached
permanent job to which this file is currently attached.

ORI .DATE Origin date (the date the file was created).

OWNER For mass storage files the user owns: public (*PUBLIC), permanent
(*PERM), local (*LOCAL), or pool (poolname).

For mass storage files the user does not own: the user number of the file

owner.,
TYPE File type: controllee or data [virtual code (VC) or physical data (PD)].
DT Device type: mass storage (MS), magnetic tape (NT), or interactive

terminal (TE).

FC File category: system—generated drop file (S), batch file (B), user file
(U), user—created drop file (D), and not defined (N).

BT Blocking type: character count (C), internal (I), record count (K), or
non-SIL file (blank).

RT Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), control word delimited (W), system block (B), or lower CYBER control
word (L).

FO File organization: sequential access (S) or direct access (D).

RP Retention period (the number of days the file is to be retained). This

column is not displayed at a terminal.

INTERACTIVE UTILITY EXECUTION

From an interactive terminal, FILES can be called by name alone; the terminal prompts for
parameters.,

Information is displayed 15 lines at a time, When output exceeds display size, enter
CONTINUE to continue the display or END to terminate the display.

Figure 4-21 shows an example of FILES output from a terminal.

4~52 60459410 E

GIVE - CHANGE FILE OWNER

The GIVE control statement changes the ownership of a private or pool file.
shows the GIVE format. Parameters can appear in any order.

Figure 4-22

GIVE, {lfn—list
*

1fn-list

U=newown

POOL=poolname
PRIVILEGED=x

ACCESS=acs

s =newown ,PRIVILEGED=x,ACCESS=acs.
POOL=poolname

List of 1 through 16 file names, separated by commas, of files
whose ownership is to change. The list must not include files with
the same name as a public file.

Indicates that all local files and attached private permanent files
belonging to you are to change ownership.

User number of the new owner of private files. If newown is 000000
and the user is privileged, the file becomes public,

Name of an existing pool to which the files are given.

Indicates whether the file can issue privileged system calls when
it is executed. The file must be a controllee file given to a pool
by a privileged user.

YES Privileged system calls are allowed.
NO Privileged system calls are not allowed.

If the POOL parameter is omitted, the PRIVILEGED parameter is
ignored. If the POOL parameter is specified but the PRIVILEGED
parameter is omitted, PRIVILEGED=NO is assumed.

New access permission set (any combination of the following letters
without separators).

R Read permission
W Write permission
X Execute permission
A Append permission
M Modify permission

The default access permission sets, if ACCESS is omitted, are shown
in table 4-3,

Figure 4-22, GIVE Control Statement Format

The current file owner can give one or more files to any of the following:

e Another user number, The file ownership category remains private, but the user
number changes. The file becomes an unattached permanent file belonging to the

owner.

e A pool. The file ownership category changes to pool.

new

No user, including the pool

boss, can then access the file without attaching the pool with the PATTACH utility.

e The public file list., The file is given to user number 000000. Only a privileged
user can give a file to the public file list,

60459410 E

4-53

Only the file owner can change the ownership of a private file. Only the pool boss can
change the ownership of a pool file.

You must attach the file before giving it. GIVE cannot change file ownership when the file
is attached by another user or opened by a privileged user.

GIVE cannot change the ownership of a public file., If the file has the same name as a
public file, GIVE can give the file to a pool or to another user but not to the public file
list.

After you give a file, you can no longer access it (unless you give it to a pool to which
you have access or unless the new owner grants you access).

When giving a file, either specify a new access permission set for the file or use the
former file access permission sets. If you specify the ACCESS parameter, its value is used
for each access permission set GIVE defines. If you omit the ACCESS parameter, former file
access permission sets are used (except for public files). The set used depends on whether
the file is a private file or a pool file before it is given. Table 4-3 lists the old and
new file ownership categories of the file and the default access permission sets when the
ACCESS parameter is omitted.

Table 4-3. GIVE Default Access Permission Sets

01d File New File

Ownership Ownership Default Access Permission Sets

Private Private The old owner”s access permission set becomes the
new owner”s access permission set.

Private Pool The old owner”s access permission set becomes the
general access permission set for all pool
members and the pool boss.

Private Public The access permission set contains read and
execute permissions only.)

Pool Private The old pool boss access permission set becomes
the new owner”s access permission set.

Pool Pool The old pool boss access permission set becomes
the new pool boss access permission set; the old
general access permission set becomes the new
general access permission set.

Pool Public The access permission set contains read and
execute permissions only.

When you give a private file to another user, GIVE immediately changes the stored owner of
the file. However, the account identifier associated with the file does not change until
the file is referenced by its new owner. The system accounting tables then indicate the
total time that the original account owned the file.

A SIL error 1709 is returned by GIVE when you attempt to give a file to a user or a pool and
the file size exceeds the maximum allowed file size of the target user or pool.

4=54 60459410 G

LABEL - LABEL TAPE FILE

The LABEL control statement specifies the contents of the HDR1 label of a tape file. 1t
stores the HDR1 label specifications for the file specified on the statement in the file
index entry of the file. The information in the file index entry is referenced when the
file is opened.

If the file is opened for write access, the specified values are written in the new HDRI
label., If the file is opened for read access, the specified HDR1 values are compared with
the values in the existing HDR1 label.

Figure 4-23 shows the LABEL control statement format,

LABEL,lfn,FID=£fid,RP=rp, FA=x,0FA=X,RT=rt ,BT=bt ,RLMIN=rlmin,RLMAX=rlmax,
PC=x,RMD=x ,MPRU=mpru ,RPB=rpb,CONVERT=cvt ,LPROC=1p,ACCESS=acs ,MFN=mfn,FSN=tsn,

1fn File name by which the tape file is referenced in the job (one to
eight characters). This parameter is required.

FID=fid File identifier (1 to 17 characters). 1f FID=fid is omitted and
the HDR1 label is written, the file identifier field in the HDRI
label is all blanks., If FID=fid is omitted and the HDR1l label is
read, the contents of the file identifier field are not checked.

RP=rp Retention period in days. The retention period is added to the
creation date to determine the expiration date for the file., If
RP=rp is omitted, the default value is 30 days.

FA=x File accessibility character., If the HDRl label is read, the
specified character must match the accessibility character in the
label., If the HDRl label is written, the specified character is
written in the label. If FA=x is omitted, the default character is
determined by an installation parameter (released value, blank).

OFA=x Original file accessibility character. If the HDRl label is to be
overwritten, the specified character must match the accessibility
character in the existing label., If OFA=x is omitted, the default
character is determined by an installation parameter (released
value, blank).

When you add a new file to a multifile set, .
the expiration date of the new file cannot

be later than the expiration date of the

first file in the multifile set.

Figure 4-23. LABEL Control Statement Format (Sheet 1 of 3)

60459410 € » 4-55

Parameters Used to Override REQUEST Statement Values

RT=rt Record type.
B System block
F ANSI fixed length
L CYBER Record Manager (CRM) control word
R Record mark delimited
U Undefined
%) Control word delimited

If RT=rt is omitted, the record type specified on the REQUEST
statement is used (default, R).

BT=bt Blocking type.
1 Internal
C Character count
K Record count

If BT=bt is omitted, the blocking type specified on the REQUEST
statement is used (default, C).

RLMIN=rlmin Minimum record length in bytes. If RLMIN=rlmin is omitted, the
minimum record length specified on the REQUEST statement is used
(default, 1).

RLMAX=r1lmax Maximum record length in bytes. If RLMAX=rlmax is omitted, the
maximum record length specified on the REQUEST statement is used
(default, 0).

PC=x Padding character, If PC=x is omitted, the padding character
specified on the REQUEST statement is used (default, blank).

RMD=x Character used as the record delimiter for R format records. If
RMD=x is omitted, the record mark delimiter specified on the
REQUEST statement is used (default, ASCII US [code #1F]).

MPRU=mpru MPRU size in bytes; used only if the file uses the V tape format.
If MPRU=mpru is omitted, the MPRU size specified on the REQUEST
statement is used (default, 32768).

RPB=rpb Records per block; used only for the K blocking type. If RPB=rpb
is omitted, the records per block value specified on the REQUEST
statement is used (default, 1).

Figure 4-23. LABEL Control Statement Format (Sheet 2 of 3)

4=56 60459410 E

CONVERT=cvt

LPROC=1p

ACCESS=acs

Data conversion option, If CONVERT is omitted, no conversion is
performed and the data is read and written as binary data.

The values for cvt are these:

YES Tape data is read .and written as character codes,
using the character set specified by the CM
parameter.

NO No conversion is performed.

If CONVERT= is specified as YES on the REQUEST control statement,
setting either YES or NO on the LABEL control statement has no
effect and conversion is done. If CONVERT= is not specified on
REQUEST, LABEL can set it to either YES or NO with the expected
results.

Label processing option.

R Read existing labels (verify existing HDR1l label).

W Write new labels.
If LPROC=1p is omitted, the label processing value specified on the
REQUEST statement is used (default: R if ACCESS=R or RW, W if
ACCESS=W).

Data access requested.

R Read access.
W Write access.
RW Read and write access.

If ACCESS=acs is omitted, the access specified on the REQUEST
statement is used (default is R).

Parameters for Multifile Sets Only

MFN=mfn Multifile set name (one to eight characters). The multifile set
name must be specified on a previous REQUEST statement. If MFN=mfn
is omitted, the multifile set name is assumed to be the same as the
file name.

FSN=fsn File sequence number (0 to 9999). If FSN=9999 is specified, the
file is opened with write access. If LPROC=W is specified, the
file is appended to the end of the multifile set, If LPROC=R is
specified, the system searches for a file with FSN=fsn. If the
file is not found, an error is returned.

If FSN=fsn is omitted, the file is identified by its file
identifier as specified on the FID parameter. If neither FSN nor
FID is specified, file sequence number 000l is used.
Figure 4-23, LABEL Control Statement Format (Sheet 3 of 3)
60459410 H 4-57

Before a LABEL statement is processed, a REQUEST statement must specify the file name.
Unless the operator is asked to mount an unlabeled tape, the REQUEST statement also
specifies the tape volumes for the file.

Several data format parameters can be specified on either the REQUEST statement or the LABEL
statement or both. If the same parameter is specified on the REQUEST and LABEL statements,
the value on the LABEL statement overrides the value on the REQUEST statement.

If the HDR!l label of a file is to contain values other than default values, a LABEL
statement is required for the file. A LABEL statement is not required for reading or
writing an unlabeled file or a labeled file whose HDR1 label contains only default values.

A LABEL statement is required for reading or writing a file that is a member of a multifile
set.,)

MULTIFILE SETS

A multifile set is a set of tape files. The set can reside on one or more tape volumes.
Each file begins with an HDRl label and ends with an EOF1 label.

A REQUEST statement specifies the name of the multifile set and the tape volumes that belong
to the set. A LABEL statement must be specified for each file in the set that you intend to
read or write in the job. Each LABEL statement specifies the name of a file and the name of
the multifile set to which the file belongs. Later statements reference the file by the
file name on the LABEL statement.

A file within a multifile set is identified by its file sequence number and its file
identifier. The file sequence number and file identifier of a file are written in its HDRI
label when the file is written.

The data format parameter values on the REQUEST statement for the multifile set apply to all
files in the set unless the parameter is also specified on the LABEL statement for the file.

Specify the same LABEL statement parameters for a file in a multifile set as you specify for
any tape file.

Writing a Multifile Set

To write a multifile set, specify 1 as the file sequence number for the first file of the
set and 9999 as the file sequence number for all subsequent files. If the specified file
sequence number is 9999, the actual file sequence number written is the next number in
sequence for the set. LPROC=W must be specified.

The LABEL statements for the files in a multifile set can be in any order. No error is
returned if a file specified on a LABEL statement is not opened.

For example, suppose a job contains the following statements:

REQUEST ,FILESET, DEV=NT,VSN=(VOL100,VOL101) ,AC=W.
LABEL ,X ,MFN=FILESET,FID=FILE],FSN=1,LPROC=W.
LABEL,Y ,MFN=FILESET ,FID=FILE2,FSN=9999, LPROC=W.
LABEL,Z ,MFN=FILESET,FID=FILE3,FSN=9999 , LPROC=W.
COPY ,FIRST,X.

COPY,LAST,Z.

4-58 60459410 F

The REQUEST statement specifies FILESET as the multifile set name for files written on the
tape volumes VOL100 and VOL10l. The LABEL statements specify HDRl labels for files in the

multifile set.

The first COPY statement writes the HDR1 label specified on the first LABEL statement and
copies any data in file FIRST to the tape file. The file sequence number in the label is 1,
and the file identifier is FILEl. The second COPY statement writes the HDR1 label specified
on the third LABEL statement and copies any data in file LAST to the tape file. The file
sequence number in the label is 2 (the next number in sequence for the set), and the file
identifier is FILE3. The second LABEL statement is not used, and its specifications are
discarded when the job ends.

Reading a Multifile Set

To read a file in a multifile set, specify its file sequence number on its LABEL statement.
The file sequence number specifies the HDR1 label read when the file is opened.

If the file sequence number of the file is not known but its file identifier is known,
specify the file identifier and omit the file sequence number on the LABEL statement. If a
file identifier is specified, the HDRl labels in the multifile set are searched until the
label containing the specified file identifier is found.

If the HDR1 label of the file contains a nonblank accessibility character, specify the
accessibility character on the FA parameter.

For example, suppose a job contains the following statements to ‘read the second file in a
multifile set named FILESET,

REQUEST,FILESET, DEV=NT,VSN=VOL100,VOL101.
LABEL, X ,MFN=FILESET ,FID=SECOND,FSN=2.
COPY,X,XFILE.

The REQUEST statement specifies the multifile set name and the tape volumes to be read. The
LABEL statement specifies a local file name for the file, the multifile set name, the file
identifier, and the file sequence number. The COPY statement opens file X and copies it to
file XFILE. To open file X, it reads the second HDRl label in the multifile set and checks
to ensure that its file identifier is SECOND and that its file accessibility character is
blank.

Rewriting Files in a Multifile Set

Files in a multifile set can be rewritten. However, the last file written is always the
last file in the set, so when a file is rewritten in a multifile set, all subsequent files
to be kept in the set must also be rewritten.

The HDR1 label of a rewritten file need not be rewritten. To verify the HDR1 label but not
overwrite the label, specify LPROC=R and ACCESS=W on the LABEL statement.

60459410 F 4-59

For example, suppose a multifile set named FILESET has three files. The following
statements in a job replace the data in the second file.

REQUEST,FILESET, DEV=NT, VSN=VOL100, VOL101,AC=RW.
LABEL, X,MFN=FILESET, FSN=3.

LABEL, Y, MFN=FILESET, FSN=2, LPROC=R, AC=W.

LABEL,Z ,MFN=FILESET, FSN=9999, LPROC=W.
COPY, X, TEMP.

COPY,NEW, Y.

COPY, TEMP, Z.

The REQUEST statement specifies the multifile set name, the tape volume containing the
multifile set, and read and write access for the files in the set. The first LABEL
statement is used to read the third file in the set. The second LABEL statement is used to
rewrite the data in the second file without rewriting the HDRI1 label of the file [the label
processing option (LPROC) is read, but the data access (AC) is write]. The third LABEL
statement is used to rewrite the third file (data and labels). It specifies file sequence
number 9999 because the file is appended to the multifile set.

The first COPY statement copies the third file to a temporary file so that its data is not

lost. The second COPY statement overwrites the data in the second file with the data on
file NEW. The third COPY statement rewrites the data saved in the temporary file.

| 4-60 60459410 F

A

LIMITS—LIST USER VALIDATIONS

The LIMITS control statement obtains validation controls and limitations for a user number.

You can only obtain the information for the user number executing LIMITS.

The format of LIMITS output follows:

CHARACTERISTICS
USER NUMBER
DEFAULT ACCOUNT NUMBER
ACCOUNT NUMBERS
MASTER ACCOUNT NUMBERS
DEFAULT PROJECT NUMBER
JOB CATEGORIES
CHARGE STATEMENT REQUIRED
INTERACTIVE ACCESS
PRODUCTION USER NUMBER

MAXIMUM NUMBER OF
FILE SIZE
SECURITY LEVEL

VALID USER PERMISSIONS
TAPE ACCESS
PRIORITY SCHEDULING
PRIVILEGED
VARIABLE RATE ACCOUNTING

User number

Default account number
List of accounts

List of master accounts
Default project number
Job categories for user
YES/NO

YES/NO

*YES/NO

Maximum file size
Security level

An asterisk (*) following the user number indicates it is a production user number.
If the user does not have any master accounts, MASTER ACCOUNT NUMBERS is not listed.

Only those permissions which the user is validated for are listed under VALID USER
PERMISSIONS. If the user does not have any this section is omitted.

Figure 4-23.1 shows the LIMITS control statement format.

LIMITS,LIST=outfile.

LIST=outfile

terminal.

Name of the optional file on which the output is written.

I1f the LIST parameter is omitted, the default file for batch jobs
is OUTPUT, and, for interactive jobs, the output is printed at the

Figure 4-23.1.

60459410 H

LIMITS Control Statement Format

4-60.1/4-60,2

LISTAC - LIST ACCESS PERMISSION SETS

The LISTAC utility lists access permission sets.

The FILES utility must be used to determine
the access permission set of a file you do

not own.

LISTAC uses the following conditions to determine the access permission sets it lists for a

file.

e File ownership category of the file

e User executing the LISTAC utility

e USER parameter specification

The effect of these conditions is shown in table 4-4.

Table 4-4, Access Permission Sets Listed
File Category|LISTAC Requestor|USER Parameter Specification|Access Permission Sets Listed
Private File owner USER=user-list Individual access permission
sets
USER=GENERAL General access permission set
USER=%* All access permission sets
omitted Owner”s access permission set
Pool Pool boss USER=GENERAL General access permission set
- USER=* All access permission sets
omitted Pool boss access permission set
Pool member USER=GENERAL General access permission set
USER=%* General access permission set
omitted General access permission set
Public Any user USER=GENERAL General access permission set
USER=%* General access permission set
omitted General access permission set
60459410 E 4-61

The LISTAC control statement format is shown in figure 4-24. All parameters are optional,.
and all keyword parameters can appear in any order.

If all parameters are omitted, LISTAC lists the owner access permission set of each private
file the user owns.

LISTAC,1fnl-1list,PRIVATE= {lfnZ—list} ,PUBLIC= { 1fn3-1list } ,POOL=pool;1fn4-list,
* *

USER=user,LIST=outlfn.

1fnl-list Private files (1 to 255 file names separated by commas).

PRIVATE= {lfnZ—list} Private files.
*
1fn2-1ist List of 1 to 255 file names separated by commas.
* All files belonging to the user,
PUBLIC= {lan;list} Public files.

1fn3-1ist List of 1 to 255 file names separated by commas.

* All public files.
POOL=pool, Pool and list of files belonging to to the pool (pool name
1fn4-list followed by 1 to 255 file names separated by commas). A pool

name specified without a file list requests that access
permission sets for all files belonging to the pool be listed.

USER=user Indicates the access permission set listed.
For private, pool, or public files:
GENERAL General access permission set only.
* All access permission sets.

For private files only (invalid if pool or public files are also
specified on the statement):

user-list List of user numbers whose individual access
permission sets are listed (1 to 16 user numbers,
separated by commas).

Table 4-4 shows the access permission sets listed for each valid
USER parameter specification.

LIST=outlfn Optional name of the file on which output is written.

If LIST=outlfn is omitted, the default output file depends on
whether LISTAC is executed within a batch job or as an
interactive task. Batch job output is written on file OUTPUT;
interactive task output is displayed at the terminal.

Figure 4-24. LISTAC Control Statement Format

4-62 60459410

LISTAC OUTPUT

LISTAC lists file information under the following column headings:

Heading Description
NAME File name. The file name has an asterisk (*) appended to it if the file

is a production file.

OWNER File ownership: owner user number for a private file, pool name for a
pool file, and PUBLIC for a public file.

USER GENERAL or user number, GENERAL indicates the general access permission

set for the file; a user number indicates the user to whom the access
permission set applies.

ACCESS Access permission set: read (R), write (W), execute {(X), append (A) and/

or modify (M) access permissions, or no access permissions (NONE).

Example 1:

The user with user number 010101 owns files A and B. The user enters the following
statement to list the owner access permission set of each file.

LISTAC.

The user receives the following output:

NAME OWNER USER ACCESS
A* 010101 010101 RX
B* 010101 010101 RX

Example 2:

A user with access to pool APOOL enters the following statement to list the general access
permission set of public file D and of each file belonging to pool APOOL. The user is not

the pool boss for APOOL.
LISTAC,PUB=D ,PO=APOOL.

The user receives the following output:

NAME OWNER USER ACCESS
D PUBLIC GENERAL R
PFILEL APOOL GENERAL RW
PFILE2 APOOL GENERAL RW

Example 3:

The file owner requests a listing of all access permission sets for private files A and
with the following statement:

LISTAC,A,B,USER=*,

60459410 H

B

4-63

The file owner receives the following output:

NAME OWNER USER ACCESS
A 010101 010101 RWX
GENERAL RX
B 010101 010101 RWX
GENERAL RX
020202 RW
Example 4:

The file owner requests a listing of individual access permission sets for user numbers

012345 and 012678 for files C and E with the following statement:
LISTAC,C,E,U=012345,012678.
The file owner receives the following output:

NAME OWNER USER ACCESS

C 010101 012345 RX

012678 R

E 010101 012345 R
4-64

60459410 E

—_—

LOAD - GENERATE CONTROLLEE FILE

The LOAD utility generates a controllee file.

A controllee file (also called a virtual code file) is an executable file.

FILES USED TO GENERATE A CONTROLLEE

As shown in figure 4-25, the LOAD utility reads input from object code files and libraries
and writes its output on the controllee file and the listing file. The figure also names
the default files LOAD uses.

INPUT
BINARY DIRECTIVES Go
OBJECT CODE CONTROLLEE
FILES FILE
LIBRARY FILES
LOAD
SYSLIB » uTiLITY
LISTING FILE
SSYSLIB OUTPUT

MO02041

Figure 4-25. Files Used by the LOAD Utility

The number of files used by the LOAD utility cannot exceed 50. These files include the
SYSLIB or SSYSLIB file, library files, and object code files.,

Library files are generated by the OLE utility described under OLE - Object Library Editor
in this chapter. SYSLIB contains all SIL routines and the runtime routines needed to run
FTN200 FORTRAN programs. SSYSLIB contains all SIL routines that must always be loaded
statically. Whenever the loader builds a dynamic controllee, it always searches SSYSLIB for
externals. Routines on SSYSLIB must also reside in SYSLIB.

Object Code Files

An object code file contains object modules generated by a CYBER 200 assembler or compiler.
The object code file can be an object file generated by the assembler or compiler or a
modmerge file generated by the OLE utility. A modmerge file may contain more than one
object code module, but it does not have a directory.

When a LOAD statement references a modmerge file, LOAD loads all modules in the file.,
Because a LOAD statement can specify only ten object code files, specifying modmerge files
enables specification of more code modules for a controllee,

An object code file can be either a local file or an attached private or pool file.

60459410 H 4-65

Listing File

The LIST parameter on the LOAD control statement can specify the name of the listing file.
1f the LIST parameter is omitted, LOAD uses the name OUTPUT. If LIST=0 is specified, no
listing is generated.

Having determined the listing file name, LOAD searches for the file. Table 4-5 lists the
LOAD processing that results from the file search.

Table 4-5. Results of Listing and Controllee
File Searches

If the file LOAD
Does not exist or is unattached, requests a new local file.
kxists as a local file, returns the existing file and requests a new

local file.

Exists as an attached uses the existing private permanent file.
private permanent file,

LOAD writes a load map on the listing file, showing the locatioms of all object modules,
databases, and common blocks in the controllee file. If LO=X is specified on the LOAD
control statement, the map also includes a cross-reference list of all common blocks and
entry points.

LOAD writes the load map with ASCII carriage control characters suitable for printing.

Controllee File

The CNTROLEE parameter on the LOAD control statement can specify the name of the controllee
file. 1f the CNTROLEE parameter is omitted, LOAD uses the name GO.

Having determined the controllee file name, LOAD searches for the file. Table 4-5 lists the
LOAD processing that results from the file search. If the file does not exist, LOAD creates
the file.

Assuming that the maximum small page size (as set by an installation parameter) is 16
blocks, the default controllee file length is #102 blocks. The controllee file length may
be extended to a maximum of #2000 blocks. If a file length of less than #2000 blocks is
specified on the CNTROLEE parameter, the file may be extended to #2000 blocks. Files with a
length greater than #2000 blocks are never extended by the loader.

When the controllee file is created, its file type must be specified as virtual code.
Read and write access permissions to the controllee file are required. If LOAD creates the

controllee file, read, write, execute, append, and modify access permissions to the file are
granted.

4~66 60459410 G

Controllee File Formats

Figures 4-26 and 4-27 show controllee file formats., The figures show both the virtual bit
addresses used when the controllee is mapped into memory and the mass storage word addresses

used when it is stored on disk.

Virtual

Mass Storage

Bit Address

Minus Page

Block Number
1

Register File

Module 1 Name

Length Header Address

Module 1 Relocated Code

L,
-

s
JJ

Module n Name

Length Header Address

Module n Relocated Code

Data Bases

Labeled Common

Error Processing information

60459410 E

Figure 4-26.

Controllee File Format
(Code and Data Bases Separate)

4-67

Virtual Mass Storage

Bit Address Block Number
Minus Page 1
0
Register File 2
Origin

Module 1 Name -
Length [Header Address

Module 1 Relocated Code

Module 1 Data Base

Module 1 $common Block

{r
3J

)
~

L

Module n Name
Length [Header Address

Module n Relocated Code

Module n Data Base

Module n $common Block

Labeled Common

Error Processing Information

Figure 4-27. Controllee File Format (Data Grouped with Code)

The first one or two blocks of the controllee file are always its minus page. The next
block contains its register file. LOAD initializes the system information stored in the
minus page and the register file.

LOAD copies object module code to the controllee file, beginning at the default origin
address unless the QRIGIN parameter specifies an origin address. If the ORIGIN parameter is
omitted but the GRLPALL parameter is specified, the default origin address is #400000 [the
first large page (128-block) boundary]. If the ORIGIN and GRLPALL parameters are both
omitted, the default origin address is #80000 (the first lé-block boundary).

LOAD copies object modules to the controllee file in the order in which their files are

listed on the LOAD control statement. Modules within modmerge files are copied in the order
in which they exist on the modmerge file.

4-68 60459410 E

Grouping Data With Code

Figures 4-26 and 4-27 show the two possible controllee file formats. The format used is
specified by the GDWC parameter on the LOAD statement.

The format shown in figure 4-26 (specified by GDWC=NO) groups all code modules together
followed by all data bases. The format shown in figure 4-27 (specified by GDWC=YES) groups
each code module with its data base and $common block, if any. ($common blocks are used
only by the system implementation language, IMPL).

Grouping each data base with its code module can eliminate page faults during controllee
execution. This is especially true if the system is using a 4-block or l6-block small page
size.

Register File

The register file always occupies bit addresses 0 through #3FFF of the controllee file.
When mapped into virtual space, the register file addresses cannot be directly referenced by
the controllee.

Specify a character string on the VR parameter to be stored in register #A of the register
file. The string can be used as identification in a dump.

LOAD stores the creation date and time for the controllee in registers #B and #C. The date
format is eight ASCII characters, mm/dd/yy, representing the month, day, and year. The time
format is eight ASCII characters, hh.mm.ss, representing the hour (24-hour clock), minute,
and second.

Dynamic Stack

The dynamic stack contains temporary working space used to store the contents of the
register file when a subroutine is called. Upon return from the subroutine, the contents of
the register file are restored, using the values stored in the stack.

Unless otherwise specified by the DSA parameter, the dynamic stack is allocated following
the last virtual address allocated when the task is executed. The dynamic stack address is
included in the load map.

SATISFYING EXTERNAL REFERENCES

When loading with LINK=M, LOAD satisfies the unsatisfied external references in the copied
object modules. To do so, it searches the directories of the specified library files for a
module or entry point name that matches an unsatisfied external reference. When a match is
found, LOAD copies the library module to the controllee file. If no match is found in the
directories of the specified library files, LOAD searches the directory of the SYSLIB file.

When loading with LINK=D, LOAD searches the directory of the SSYSLIB file satisfying all

externals found there. All unsatisfied externals are assumed to be dynamic. Dynamic
externals are satisfied at execution time by the linker.

60459410 F 4—69

After a library module is copied to the controllee file, LOAD checks all entry points
defined for the module to determine whether they match any currently unsatisfied external

references. When a match is found, LOAD uses the entry point to satisfy the external
reference. Keep this manner of linking in mind when contemplating use of multiple libraries
containing modules that have multiple duplicate entry points.

The EQUATE parameter can change external reference linking. If the EQUATE parameter is
specified, LOAD performs the requested substitutions of external reference names. The
library modules loaded and the common block names used can be changed.

DYNAMIC LINKING USING THE SYSTEM SHARED LIBRARY

Controllees may be built to require or not require the system shared library, SHRLIB, by
using the LOAD link option. Controllees built by the loader with LINK=D are completely
linked except for the shared SYSLIB module references. During execution of the controllee
the shared SYSLIB modules are used for dynamically satisfying SIL routines. If a controllee
is partially statically loaded with the shared library active, and then run on a system
without the shared library active, the controllee aborts. When the shared library is active
and a controllee references a page in the library region that is not locked or mapped, the
controllee aborts.,

During execution of a dynamically linked controllee, the linker (residing in SHRLIB)
performs the functions of LOAD such as data base and common block initializationm,
relocation, and satisfaction of externals on a dynamic basis when a call to an object module
is made.

For loading a controllee that requires SHRLIB, there are various optioms. All SYSLIB
programs can be loaded with the controllee or can be dynamic and linked during execution.
Dynamic SYSLIB programs may or may not call entries or reference common blocks in the
controllee. The linker may or may not backpatch META programs in the controllee.
Backpatching is a modification the linker makes to SYSLIB calls in controllee programs so
that only the first call to the SYSLIB routine is dynamic.

Dynamic Linker
The linker does the loading of dynamic modules and gives control to the called module.
The order for satisfying the called module is as follows:

1. If LINK=D was specified, the linker searches only the shared SYSLIB that resides in
the shared system library.

2. If LINK=C was specified, the linker first searches the controllee for the entry and
then searches the shared SYSLIB.

Loading rules are as follows:

e Dynamically called modules that reference external data cause the module that
contains the external data to be loaded and linked by the linker.

e Dynamically called modules that define or try to reduce previously loaded common
blocks always use the previous definition.

e The linker ignores the presetting of common blocks by dynamically called modules
that preset previously loaded common areas.

4-70 60459410 F

Dynamic Execution
Any module that resides in a dynamic library must adhere to the following conventions:
. The module cannot have any external references to code memory sections, data bases,
or common within a code msec (for more information on msec, refer to the CYBER 200
Assembler Reference Manual). All external references must be from either the data

base or a labeled common block.

. The module must follow the register convention defined in appendix D of volume 2 of
this manual.

. The module must not depend on any common to be initialized to zero. Only areas
preset by data statements are initialized.

° The length of blank, labeled, and numbered common is established by the first
dynamically executed module that defines it.

. If more than one module presets the same common block, presetting is done only by
the first module executed. Subsequent presetting of the common block is ignored.

. During dynamic execution, if a module expects a second module to preset a common,
the second module must be called before the first module uses that common.

Dynamically Linked Controllees

Controllees that are not completely statically linked should be aware of the following facts
relating to dynamic execution.

° Shared SYSLIB modules may vary from one execution to the next.

. Controllees are cautioned to follow calling conventions and be aware of the coding
conventions for dynamic modules.

. Controllee files may be smaller, and drop files may be larger.
° Calls from META modules within a controllee file are never backpatched. This means
that dynamic calls from META modules go through the linker each time. The LINK=B

option can be used to override this restriction.

° IMPL programs should be compiled with OPT=V if possible. This increases dynamic
call execution.

PAGE GROUPING

Each grouping parameter (GRLP, GRSP, GRLPALL, GROS, and GROL) specifies a set of object
modules or common blocks that LOAD is to process as a group. More than one instance of any
grouping parameter can be specified.

Each group of modules or blocks is mapped to a virtual address range. A virtual address
range can include more than one page. It begins at the address specified on the grouping
parametere.

Grouping parameters do not specify the order of the blocks or modules in a group. The order

is determined by the order in which the modules are copied to the controllee file.

60459410 G 4-71

All modules or blocks in a group must be of the same type. The three types are code
modules, labeled common blocks, and blank or numbered common.

A code module is specified by name, a labeled common block is specified by a name with an *
prefix and blank common is specified by an * without a name.

If a virtual bit address on a grouping parameter is specified, ensure that the address has
not been allocated. The address must be prefixed by a # character.

Grouping Controllee File Blocks

The GRSP and GRLP parameters group blocks or modules that are stored in the mass storage
controllee file.

‘A group specified on a GRSP parameter is mapped to small pages. A group specified on a GRLP
parameter is mapped to large pages.

If the GRLPALL parameter is specified, all modules and blocks are mapped to large pages.

Code modules and labeled common blocks specified on GRSP and GRLP parameters are mapped to
the controllee file. Blank common or numbered common blocks are mapped to the drop file,

If no grouping parameters are specified, all object modules, data bases, and common blocks
are mapped to small pages.

For example, consider the following grouping parameters on a LOAD control statement.
LOAD,GRLP=#%BLK] ,GRLP=%*BLK2,*BLK3, *BLK4 ,GRLP=%,

LOAD maps labeled common block BLKl to a large page and labeled common blocks BLK2, BLK3,

and BLK4 to another large page within the controllee file. It maps blank common to a large

page within the drop file. (Blank common is always mapped to the drop file.) LOAD maps all
other common blocks and modules to small pages.

Grouping Unmapped Blocks

The GROS and GROL parameters group blocks that are not stored in the mass storage controllee
file.

The GROS parameter groups blocks to be mapped to small pages; the GROL parameter groups
blocks to be mapped to large pages.

Specifying labeled common block groups on the GROS and GROL parameters reduces the size of
the stored controllee file because the specified common blocks will be mapped to another
file, which will be either the drop file or other mass storage file.

Use of the GROS and GROL parameters could increase the size of the drop file because the
grouped labeled common blocks will be mapped by default to the drop file instead of to the

controllee file. You can increase the allocated drop file size with the DFL parameter.

Object modules and labeled common initialized with data cannot be grouped with GROS or GROL
parameters. Labeled common blocks specified on a GROS or GROL parameter are not preset.

4=72 60459410 H

-_——

Grouping Parameter Mapping

LOAD does not perform mapping to a file with GROS and GROL as it does with GRSP and GRLP.
This mapping is left up to the execution of the controllee or the system at run time.

GROS, GROL, GRSP, and GRLP all align the specified groups or modules on their respective
page size boundaries. Specifying GROS or GROL, however, does not determine the unit size of
the mapping to a noncontrollee file that includes the drop file, The unit size is either a
small or large page.

To create a specific mapping to a noncontrollee file when GROS or GROL was specified for the
memory area to map to, the user program calls Q5MAPIN specifying the desired file to map to
and the desired unit size of the mapping. Q5MAPIN associates a virtual address range with a
mass storage file. If QSMAPIN is not called before a group or module is accessed, the
system creates a small page unit size drop file mapping for the page accessed. Once the
system has created a mapping, Q5MAPIN returns an error if it is called with the same virtual
range. The user program must call Q5MAPIN for a large page unit size mapping.

When GRSP or GRLP are specified, the LOADER creates a unit size mapping the same size as the
type of page boundary to which a common block is aligned.

SPACE INITIALIZATION

LOAD presets labeled common blocks and data base in the controllee file to zero by default
or to the value specified by the keyword INITCOM and then initializes data in the blocks as
requested by the program. If you specify INITCOM, you may use one of four predefined values
to preset common, or use a fifth option that allows you to specify your own pattern.

The predefined values are integer zero (all zero bits), floating-point zero, indefinite, and
half-word floating-point zero. The predefined constants are represented by the keywords
ZERO, INDEF, FPZERO, and HFPZERO. Labeled common blocks specified on GROS or GROL
parameters are not preset to zero.

When the program first references blank or numbered common, VSOS provides the program with a
page initialized to a memory pattern.

60459410 H 4-73

TARGET PAGE SIZE

Specify a target page size for the controllee file with the TSP parameter on the LOAD
control statement.

The target page size is the small page size for which LOAD optimizes the controllee
structure. If the TSP parameter is omitted, the target page size is the small page size
VSOS is currently using.

The small page size VSOS uses is selected during VSOS autoload. The possible sizes are one,
four, and sixteen 512-word blocks.

A controllee optimized for a small page size can be executed when VSOS is executing with
that small page size or a smaller small page size. For example, a controllee loaded for the
4-block small page size can execute with a 4-block or l-block small page size, but it cannot
execute with a 16~block small page size.

An attempt to execute a controllee when VSOS is using a small page size larger than the
target small page size of the controllee results in the aborting of the job.

The boundary on which LOAD maps a group depends on its type.

LOAD maps each controllee group except blank or numbered common groups to the next available
address on a 512-word block boundary. It maps a blank or numbered common group to the next

available address on a target page boundary. It maps a group specified by a GROS parameter

to the next available address on a selected page size boundary.

If the TSP parameter is not specified, LOAD assumes the controllee will only be run on a
system with a small page size equal to the one being used by VSOS at the time the controllee
was built. This allows LOAD to make better use of drop file map entries that are generated
by LOAD. LOAD allows a drop file map entry to represent up to 32 times the running small
page size. If the TSP parameter is specified, a drop file map entry generated by LOAD will
never represent more than 32 blocks.

4=74 60459410 G

CONTROL STATEMENT FORMAT

Figure 4-28 shows the LOAD control statement format. All parameters are optional. The list

of binary object code files must appear before any other parameters.
can appear in any order.

All other parameters

LOAD,1fny,...,1fny,BINARY=1fn], ...l fny,CNTROLEE=1fn/len,
DFL=d1en,INPUT=lfn,LIST=1fn/1en,LIBRARY=lib1,...libn,
EQUATE=sub ,namel,...,subn,namen,

ENTRY=ept,

INITCOM=o0pt,

INITFS=opt,
VR=string,ORIGIN=bitadr,TSP=n,GDWC=0pt,
GRSP=mod ,...,modn,#bitaddr,

GRLP=mod ,...,modn,#bitaddr,
GROS=blk,,...,blk ,#bitaddr,
GROL=blk.,...,blk ,#bitaddr,
GRLPALL=,LINK=1inK,DSA=bitadr,LO=X,
VALIDATE=Y/N,ULIB=filename,SLIB=filename.

file BINARY.

CNTROLEE=1fn/len Controllee file. 1fn is the name of the file.
omitted, LOAD writes the controllee on file GO.

the default file length is #102 blocks.

blocks.

also doubles as an illegal instruction.

pattern also doubles as an illegal instruction.

lfng List of object code files (1 through 10 file names, separated by
commas). If no object code files are listed, LOAD uses file
BINARY.

BINARY=1fnj List of object code files. This option is the same as the

object code list at the beginning of the control statement,
except the B= option may appear anywhere within the control
statement. If BINARY=1fni is omitted and there is no lfni
list at the beginning of the control statement, LOAD uses the

len is the file length in 512-word blocks. 1If len is omitted,

DFL=dlen Number of 512-word blocks in the drop file created when this
controllee file is executed. (This value is stored in word #99
of the minus page.) If DFL=dlen is omitted, word #99 of the
minus page is zero and the system determines the drop file size.

If LINK=D is specified or defaulted, dlen defaults to the length
of the controllee plus the length of blank common plus 128

INITCOM=opt 1f opt is ZERO, labeled common and data base are preset to
integer zero; that is, all bits are set to zero.

If opt is FPZERO, labeled common and data base are preset to
floating-point zero; that is, #8E00000000000000.

If opt is HFPZERO, labeled common and data base are preset to
half-word floating—point zero; that is, #8E0000008E000000. This

1f 1fn is

This pattern

Figure 4-28., LOAD Control Statement Format (Sheet 1 of 6)

60459410 J

4-74.1

INITFS=opt

If opt is INDEF, labeled common and data base are preset to an
indefinite value; that is, #7D1E161C701F1D00. This pattern is:

® An illegal instruction if register 16 contains a value
of integer 1

e A 64-bit and 32-bit indefinite floating-point number
¢ R-type file delimiters of records, groups, and files
e A UNIX string delimiter

. Even parity to cause control word parity errors on
V-type files

If opt is #hhhhhhhhhhhhhhhh, labeled common and data base are
preset to the user-specified value. The value may consist of 1
to 16 hexadecimal digits.

If INITCOM=opt is omitted, the default value is equivalent to
INITCOM=ZERO.

If opt is ZERO, free space is preset to integer zero: that is,
all the bits are set to zero.

If opt is FPZERO, free space is preset to floating-point zero:
that is, #8E00000000000000.

If opt is HFPZERO, free space is preset to halfword
floating-point zero: that is, #8EO000008E000000. This pattern
also doubles as an illegal instruction.

If opt is INDEF, free space is preset to an indefinite value:
that is, #7D1E161C701F1D00. This pattern is:

® An illegal instruction if register 16 contains a value
of integer 1

e A 64-bit and 32-bit indefinite floating-point number
° R-type file delimiters of records, groups, and files
e A UNIX string delimiter

. Even parity to cause control word parity errors on
V-type files

If opt is #hhhhhhhhhhhhhhh, free space is preset to the

user-specified value. This value may consist of 1 to 16
hexadecimal digits.

If opt is CIF1C, free space is preset to the value
#000C1F1CO00CIF1C.

If INITFS=opt is omitted, the default value is INITFS=ClFliC.

® 4-74,2

Figure 4=28. LOAD Control Statement Format (Sheet 2 of 6)

60459410 J

_—

INPUT=1fn 1fn is a local or attached permanent file from which LOAD reads
parameters.

All parameters are allowed on the file except for I= and the
object code file 1list. The I= option may be intermixed with the
other options, but it may only be specified once and is
processed as if it were specified last.

The options on the file must be separated by commas, with an
optional comma at the beginning of the file. Blanks are allowed
after any delimiter just as they are in a control card. EOR is
ignored, and a period, right parenthesis, EOG, EOF, or EOI
terminates the option.

L}§T=lfn/len 1fn is the local or attached permanent file to which LOAD writes
the load map. If this parameter is omitted, LOAD writes the map
on the local file OUTPUT.

If LIST=0 is specified, no listing is generated, including the
cross—-reference listing specified by the LO=X parameter.

len is the number of 512-wqrd blocks allocated for the file. 1If
len is omitted, #25 blocks are allocated. Unused file space is
released at the end of map construction.

LIBRARY=1ibj List of library files from which LOAD satisfies external
references. (OLE creates library files.) If LIBRARY=1libj is
omitted, LOAD searches only file SYSLIB.

EQUATE=subj ,namej List of external reference pairs. During linking, the second
name in each pair is replaced by the first name in the pair.

Each common block name must be preceded by an asterisk. An
asterisk alone indicates blank common. :

The EQUATE parameter cannot change module names.

This parameter cannot be used to change the name of entry points
residing in the system shared library that are to be called
dynamically.

To use this parameter on the system shared library, the
controllee must be statically loaded.

ENTRY=ept Name of an entry point in a loaded module at which execution is
to begin (the transfer address). If ENTRY=ept is omitted,
Q8MAIN is used.

VR=string String of one through eight ASCII characters to be stored, left

- justified and blank filled in register #A. The string cannot
contain the characters , .) and blank. 1If no VR= is specified,
the date and time in the form MMDDHHMM is placed in the register.

Figure 4-28. LOAD Control Statement Format (Sheet 3 of 6)

® 4-75 60459410 J

GDWC=opt Indicates the controllee format used. If GDWC=NO is specified,
code modules and data bases are grouped separately (figure 4-26
format). If GDWC=YES is specified, each code module is grouped
with its data base and $common block, if any (figure 4~27
format). If this parameter is omitted, GDWC=YES is used.

GRSP=modlist, List of modules or common blocks to be grouped, loaded, and
Foitaddr mapped in at the specified bit address.

The names listed for this parameter must all be of the same type
(code modules, labeled common blocks, or blank or numbered
common). Common block names must be prefixed by an *, An *
alone identifies blank common.

If a bit address is specified, it must have a # prefix and be a
multiple of the target small page size (a multiple of #8000,
#20000, or #80000). If the bit address is omitted, the segment
is loaded at the next available block boundary.

GRLP=modlist, List of modules or common blocks to be grouped in a segment and
#bitaddr loaded at the specified large page address.

The names listed for this parameter must all be of the same type
(code modules, labeled common blocks, or blank or numbered
common). Common block names must be prefixed by an *., An *
alone identifies blank common.

If a bit address is specified, it must have a # prefix and be a
large page boundary (a multiple of #400000). If the bit address
is omitted, the segment is loaded at the next available large
page boundary.

. GROS=blklist, List of common blocks to be grouped in a segment and loaded at a
#bitaddr selected page size boundary. LOAD does not reserve space for
the common blocks in the controllee file.

The names listed on an instance of this parameter must be either
all labeled common blocks or all blank or numbered common.
Common block names must be prefixed by an *, An * alone
identifies blank common.

If a bit address is specified, it must have a # prefix; if the
specified bit address is not a selected page size boundary, LOAD
increases it to the next selected page size boundary (a multiple
of #80000). If the bit address is omitted, the segment is
loaded at the next available selected page size boundary. When
GROS is used more than once, LOAD starts subsequent groups on
block boundaries.

Figure 4-28. LOAD Control Statement Format (Sheet 4 of 6)

4-76 60459410 H

GROL=comlist, List of common blocks to be grouped together and loaded at a
#bitaddr large page boundary.

LOAD does not reserve space for the common blocks in the
controllee file.

The names listed for this parameter must be either all labeled
common blocks or all blank or numbered common. Common block
names must be prefixed by an *. An * alone identifies blank
common.

If a bit address is specified, it must have a # prefix and be a
large page boundary. If the bit address is omitted, the segment
is loaded at the next available large page boundary (a multiple
of #400000).

GRLPALL=A All code modules, data bases, and labeled common blocks are
grouped and loaded on large page boundaries. A blank must
follow the = sign in the parameter.

When LINK=D is specified, this parameter has no effect on
individual modules that are to be dynamically loaded by LINKER.
It does cause the linker to get loading space on the drop file
in 128-block increments.,

LINK=1link Indicates a complete static load or a partial static load, with
all unsatisfied externals to be loaded and executed dynamically
by using a linker.

D Causes LOAD to assume that all unsatisfied externals
are to be dynamically loaded and executed. If LINK=D
is used when the system shared library is either
active or not active, LOAD maps the existing file
SHRLIB into its working space and uses it for
constructing the controllee. When LINK=D is used,
LOAD does not use SYSLIB as the default LIB parameter
but uses SSYSLIB instead. A controllee built for
dynamic loading and execution does not execute when
the system shared library is turned off.

M Causes LOAD to move all code to the controllee file,
doing a complete static load and using SYSLIB as the
default for the LIB parameter. LINK=M has the same
effect whether the system shared library is active or
not.

C Causes the same as LINK=D but also allows dynamic
external modules to call controllee file modules and
reference controllee file common blocks.

Figure 4-28. LOAD Control Statement Format (Sheet 5 of 6)

60459410 H 4=77

DSA=bitadr

LO=X

VALIDATE=Y/N

ULIB=filename

SLIB=filename

B/CB/BC Causes the same as LINK=D/C but also allows META
modules to be backpatched by the linker.

S Causes LOAD to do a complete static link of all
externals that would have been dynamic. The code
for the externals is not moved to the controllee but
is left in the dynamic user or shared library.

When the system shared library is active, the LINK default
is D; otherwise, the default is M.

1f you expect a dynamic library module to call a controllee
file module, you must specify LINK=C. If LINK=D is specified
instead, the dynamic library module is linked to a library
module instead of to the one being supplied in the controllee
file,

If LINK=B/CB/BC is specified and the call follows the proper
calling sequences, the linker modifies the META program
registers and data (for more information, refer to the Dynamic
Execution subsection of the LOAD control statement in this
chapter).

Virtual address at which the dynamic stack begins., Tt must be
a page boundary. If DSA=bitadr is omitted, the dynamic stack
begins at the last virtual address allocated.

Indicates that the load map should include a common block and
entry point cross-reference list. All common blocks and entry
points are listed alphabetically, with the modules that
reference them. If LO=X is omitted, the common block and
entry point cross-reference is omitted.

Causes LOAD to validate (make sure they actually exist) all
dynamic externals. The externals are only validated to one
level; externals referenced by the dynamic externals are not
checked. VALIDATE=N is the default. Externals that do not
validate are to be considered unsatisfied externals.

Causes LOAD to use file filename as a user dynamic library.
Externals on this library are satisfied after all libraries
specified by the LIB= have been tried. The default is no user
dynamic library. ULIB=filename implies LINK=D, unless some
other LINK= option is specified.

Causes LOAD to use file filename as a system shared library.
Externals on this library are satisfied after all LIB= and
ULIB= libraries have been tried. If SLIB= is not specified
and the system shared library is ACTIVE, LOAD defaults to the
active shared library. If SLIB= is not specified and the
system shared library is not active LINK=B/C/D is specified,
LOAD defaults to the system shared library file.
SLIB=filename implies LINK=D.

4-78

Figure 4-28. LOAD Control Statement Format (Sheet 6 of 6)

60459410 H

9. Enter either one or more LOAD parameters or a space to specify no more parameter
input. Each LOAD parameter must be specified with its keyword (for example,
L=PRINTMAP). A comma must separate the parameters if more than one is specified on
a line.

10. If you enter another LOAD parameter, LOAD sends the following message:
continue

Enter another LOAD parameter. LOAD repeats the CONTINUE message until you enter a
space to end parameter input.

When you enter a space, LOAD begins building the controllee file, using the
parameter input.

Figure 4-29 shows an example of interactive prompting for parameter input. LOAD responses
are shown in lowercase letters; user entries are shown in uppercase letters. /CR/ indicates
a carriage return; A indicates that a blank or space should appear. In figure 4-29, the
user requests that LOAD use object files XA, XB, and XC, controllee file TONY, and listing
file PRINTMAP.

input ? LOAD request.

XA, XB, XC /CR/ Enter names of files containing code modules.
origin ? LOAD request.

28000 /CR/ Enter bit address where first module is to be loaded.
entry ? LOAD request.

A/CR/ Indicate default entry point.

any other options ? LOAD request.

CN=TONY /CR/ Indicate controllee file name.

continue LOAD response.

L=PRINTMAP /CR/ Indicate listing file.

continue LOAD response.

A/CR/ Terminate parameter input.

Figure 4-29. Example of Interactive LOAD Execution

60459410 E 4-79

LOADPF - RELOAD FILES

The LOADPF control statement reloads archived permanent files and queue files. The files
must have been archived by the DUMPF utility. For information on the archived file format,
refer to the DUMPF statement description earlier in this chapter.

LOADPF can execute concurrently with other tasks, including other LOADPF tasks.

The LOADPF control statement format is shown in figure 4-30. All parameters are optional.
All except the first can appear in any order. The first parameter, if specified, must be a
list of file names.

The first statement format shown in figure 4-30 is used when reloading from a remote system.

The second statement format is used when files are reloaded from CYBER 200 mass storage or
tapes.

A production file will not retain its
production status when reloaded by any user
other than the site security administrator.
A warning message is output for each file as
it is reloaded.

Format for Front-End File Loading

LOADPF,1lfn—-1ist ,USER=userno,POOL=plist ,DSET=devset ,PACK=packlist ,ACCOUNT=alist,

JCAT=jcatlist ,0DSET=0ldds, LID=1idlist ,SELECT=opts,VERIFY=opt ,PURGE=popr,DATE=mmddyy,

TIME=hhmm, NOWNER=nowner,LO=x, LIST=1fn/len,ST=stid,SI=setid, (JCS=strings| .
{INPUT=1fn }

Format for CYBER 200 File Loading

LOADPF,1fn-1ist ,USER=userno,POOL=plist ,DSET=devset ,PACK=packlist ,ACCOUNT=alist,
JCAT=jcatlist,0DSET=0ldds,LID=11dlist,SELECT=opts ,PURGE=popt ,VERIFY=0opt,DATE=mmddyy,

I T IME=hhmn ,NOWNER=nowner ,LO=x,LIST=1fn/len,DEVICE=device ,DENSITY=den,TF=tf,VSN=id~1ist,
IU=iu,IRC=irc.

lfn-list List of 1 through 128 file names separated by commas. The
specified files are assumed to belong to any or all user numbers
specified by the USER parameter and/or any or all pools specified
by the POOL parameter. If omitted, all files belonging to userno
and/or plist are loaded. If SEL=0 is specified, 1lfn-list
identifies the last-group-file(s) of the output—file-family(s) to
be reloaded. 1If SEL=0 is specified and lfn-list is omitted, LOADPF
reloads all output—file-families.

USER=userno Private file owners.
For a nonprivileged user:

userno User number of the nonprivileged user.

I Figure 4-30. LOADPF Control Statement Format (Sheet 1 of 6)

& 4-80 ' 60459410 J

POOL=plist
DSET=devset

PACK=packlist

ACCOUNT=alist

JCAT=jcatlist

ODSET=o0ldds

LID=1lidlist

SELECT=opts

For a privileged user:

userno List of 1 through 128 user numbers separated by
commas .
* All file owners, private, pool, and public.

For a system user who has specified the SEL=I or SEL=0 parameter(s):

u-list List of 1 through 128 user number(s) that queued the
files (original owner). If omitted, LOADPF reloads
the queue files of all user numbers.

If USER=userno is omitted and the POOL parameter is not specified,
LOADPF reloads files belonging to the user number under which
LOADPF was run.

List of 1 through 128 pool names separated by commas.

Allows files to be reloaded onto a specific device set. devset is
a list of 1 through 128 device set names (DVSTnn) separated by
commas. If more than one device set is specified, the device sets
will be used in the order they appear in the parameter list, with
the first being filled before the next one is used.

Allows files to be reloaded onto a specific pack. packlist is a
list of 1 to 128 pack names (PACKnn) separated by commas. If more
than one pack name is specified, the packs will be used in the
order they appear in the parameter list, with the first being
filled before the next is used.

For a nonprivileged user, alist is a list of one to seven account
identifiers separated by commas. You must be validated for all
specified account identifiers in order to archive files with these
accounts. For a privileged user, alist is a list of 1 through 128
account identifiers separated by commas. Only files with the
specified accounts are archived.

List of 1 through 64 job categories separated by commas. This
parameter is allowed only if SEL=I1 or SEL=0 is specified and
applies only to the input queue. If omitted, files belonging to
all job categories in the input queue are reloaded.

Select files to reload that, when dumped, were resident on the
specified device set(s). oldds is a list of 1 through 128 device
set names (DVSTnn). Device sets specified do not need to be in the
configuration of CYBER 200 executing this LOADPF. 1If omitted,
LOADPF selects files to reload without regard as to their old
device set residency.

List of 1 through 128 destination LIDs for input or output files.
This parameter is allowed only if SEL=I or SEL=0 is specified. 1If
omitted, all queue files are reloaded regardless of their
destination LIDs.

File characteristics of all files loaded. A file must meet all
characteristics specified in order to be loaded. opts can be any
combination of the following letters without separators.

A Files accessed on or after the date and time
specified by the DATE and TIME parameters. An
access is defined as an open but not an attach.

60459410 J

Figure 4-30. LOADPF Control Statement Format (Sheet 2 of 6)

4-81

c Files created on or after the date and time
specified by the DATE and TIME parameters.

I Files in the input queue. Only the system user is
allowed to select this option. The I option is
mutually exclusive with the PO parameter.

M Files modified on or after the date and time
specified by the DATE and TIME parameters.

N : Reverses the meaning of the A, C, and M options.
For example, NC specifies files not created since
the date and time specified. This option may appear
anywhere in the combination of characters, but it
always reverses the meaning of all characters
specified.

0 Files in the output queue. Only the system user is
allowed to select this option. The O option is
mutually exclusive with the PO parameter.

X Files expired. A file expires when more days have
passed since its creation date that the number of
days in the retention period for the file.

R If an existing file has the same name as an archived
file, replace the existing file with the archived
file, If the file does not exist, it is created.

If SELECT=opts is omitted, LOADPF assumes no options.
PURGE=popt Purge the pseudo files option indicating whether LOADPF should

purge the associated pseudo files of the specified device sets if
reload is from mass storage.

XYES Purge the pseudo files.
NO Do not purge the pseudo files.,

If PURGE=YES is specified and if the LOADPF completes without
error, all pseudo files on the specified device set(s) are purged.
If PURGE=NO is specified and if the LOADPF completes without error,
no pseudo files are purged. If PURGE is omitted, no pseudo files
are purged. This parameter is ignored if the reload is not from
mass storage.

Figure 4-30. LOADPF Control Statement Format (Sheet 3 of 6)

» 4-82 60459410 J

Verification Parameters

VERIFY=opt Verify the integrity of the archival medium. No reloading of files

- takes place, but a list file is generated. The files that are
verified are specified as if they are to be reloaded. Verification
errors are noted in the dayfile and verification is halted after a
threshold of errors is reached. The extent of the verification is
determined by the opt value as follows:

Q Quick verification. The archival medium is scanned
and selected fields are checked for consistency.

F Full verification. The quick verification is
performed plus the data of each file is read, to
ensure it is readable. The length of each file read
is compared with the length of the file dumped.

This option may take 2 - 30 times as long (or
longer) as the Q option depending on the size of the
files and the archival medium involved.

If this parameter is not specified, no verification is performed.

DATE=mmddyy Date used by the A, C, and M options on the SELECT=opts parameter.
The first two digits of the date indicate the month, the next two
digits the day of the month, and the last two digits the last two
digits of the year.

If DATE=mmddyy is omitted, LOADPF uses the current date.

TIME=hhmm Time used by the A, C, and M options on the SELECT=opts parameter.
hh is the hour, based on a 24~hour clock. mm is the minute in the
hour.

If TIME=hhmm is omitted, LOADPF uses midnight.

NOWNER=nowner New owner under which all files selected will be loaded. The
NOWNER parameter can be either a user number or a pool name. This
parameter is only valid for privileged users.

LO=x Audit information required.
F Full audit.
P Partial audit.

If 10=x is omitted, LOADPF writes partial audit information.

LIST=1fn/len Listing file specifications:

1fn File name (one to eight letters or digits, beginning
with a letter). 1If 1fn is omitted, LOADPF uses file
OUTPUT.

len File length in 512-word blocks. If len is omitted,

the file length is #40 blocks.

Figure 4-30. LOADPF Control Statement Format (Sheet 4 of 6)

60459410 J 4-82.1

For Front-End File Reloading Only

ST=stid

SI=setid

JCS=strings

INPUT=1fn

RHF logical identifier of the other system (three ASCII
characters). This parameter is required.

Set identifier of the archive storage on the other system. This
parameter is required. It must be a name of one to six letters or
digits beginning with a letter.

On NOS/BE, the SI parameter is the multifile set name and must be
the same name specified on the VSN parameter. For IBM remote
hosts, the SI parameter is ignored.

List of 1 to 10 text strings sent to the remote system. Each
string must be delimited by double quote (") characters. Strings
are separated by commas.

This parameter cannot be used if the I parameter is used. If both
JCS and INPUT are omitted, then I=INPUT is assumed.

Name of the CYBER 200 file containing the text string to be sent to
the other system. Text strings in the file must appear the same as
they would if entered on the JCS parameter without the " delimiters.

This parameter cannot be used if the JCS parameter is used. If
both JCS and INPUT are omitted, then I=INPUT is assumed.

For CYBER 200 File Reloading Only

DEVICE=device

DENSITY=den

The following parameters are ignored if

specified with RHF file archiving parameters.
Device type from which to load archived files:

MS Mass storage.

NT Magnetic tape.

If DEVICE=device is omitted, the default set by an installation
parameter is used.

Recording density (for tapes only):

PE 1600 cpi

GE 6250 cpi
If DENSITY=den is omitted and DEVICE=NT is specified, the
installation~defined default density (released value, 6250 cpi) is
used. If the density specified or the default density does not

match the density on the tape, processing continues with the
density specified on the tape.

® 4-82,2

Figure 4-30. LOADPF Control Statement Format (Sheet 5 of 6)

60459410 J

-

TF=ct

VSN=id-1list

Tape format (for tapes only):
\' Variable block size format with block size set to 8K.
LB Large block size format.

If TF=tf is omitted, LOADPF uses the format in which the tape was
written. The LB format is the format used by DUMPF prior to the
2.3 release. This parameter is mutually exclusive with DEV=MS.

Archive storage device identifiers. VSN=id-list must specify all
device sets or tape volumes containing files to be loaded.

If DEVICE=MS, VSN specifies a list of one through six device sets
in the form DVSTnn. nn is #01 through #FF. If DEVICE=NT, VSN
specifies a 1list of 1 through 255 tape VSNs and can be 1 to 6
alphanumeric characters.

IU=iu Inhibit unload option indicating whether the system unloads a tape
volume when the utility is complete. This applies to tape files
only.

Y Does not unload tape volume.
N Unloads tape volume.
If IU=iu is omitted, N is used.
IRC=irc Inhibit ring check option. This applies to tape files only.
Y 1f a tape is already mounted with the ring in,
LOADPF will accept the tape with the ring in or the
ring out; otherwise, if the tape is not mounted,
LOADPF will request the tape without the ring.
N LOADPF will request the tape without the ring.
If IRC=irc is omitted, N is used.
Figure 4-30. LOADPF Control Statement Format (Sheet 6 of 6)
60459410 J 4-83

RHF RELOADING

If the RHF application program is present on the system, it interprets the ST, SI, JCS, and
INPUT parameter specifications. LOADPF uses the ST parameter specification to determine the
remote system on which the file copies are stored. The SI, JCS, and INPUT parameter
specifications determine where the file copies are stored on the remote system.

LOADPF passes a text string to the remote system to request the file copies. The string is
specified on the JCS parameter or in the file specified on the INPUT parameter. The
required content of the text string depends on the RHF software in the remote system. For
more information, refer to the RHF documentation for the remote system.

RELOADING FROM CYBER 200 MASS STORAGE

When loading files from CYBER 200 mass storage, enter a LOADPF statement on the same user
number that the DUMPF was performed and that specifies the DEVICE=MS parameter and the
device sets on which files were archived on the VSN parameter.

® 4-84 ' 60459410 J

-

RELOADING FROM CYBER 200 ON-LINE TAPES

When reloading files archived on CYBER 200 on-line tapes, enter a LOADPF statement that
specifies the DEVICE=NT parameter and the VSNs of the tape volumes on the VSN parameter.
Optionally, you can specify the recording density on the DENSITY parameter. If the density
of the tape does not match that of the density parameter, LOADPF uses the density of the
tape and issues an appropriate message.

Files archived on CYBER 200 tapes are stored within a multifile set. For each file
reloaded, LOADPF generates the file identifier of its archive file copy, using the file name
and owner. (The file identifier format is given in the DUMPF statement description earlier
in this chapter.) LOADPF then searches the multifile set for an HDR1l label containing the
generated file identifier and reloads the file.

If the file was archived by a nonprivileged
user, its access permissions must be rede-
fined. The access directory is not saved
when a nonprivileged user archives a file.

The TF keyword allows you some control over how LOADPF handles the two formats, LB or V. If
this keyword is not specified, LOADPF adapts itself to the format in which the tape was
written., 1If a particular tape format is specified with the TF keyword, LOADPF will only be
able to read that particular format. If a format different than that specified with the TF
keyword is encountered, LOADPF will abort with an appropriate error message.

60459410 J 4=84.1/4-84.2 @

USER RELOADING CAPABILITIES

Privileged users can reload any file archived using DUMPF., Privileged users can also reload
archived files to a new owner by specifying the NOWNER=nowner parameter. Nonprivileged
users can reload their own user number or pool for which they are the pool boss.

If LOADPF cannot restore pool ownership of the file because the pool no longer exists or
because the user is not the pool boss for that pool, it reloads the file as a private file.

The information in the first block of each archived file includes the contents of selected
fields in the permanent file index entry for the file. If a privileged user archives the
file, the first block also contains the following information:

e A copy of the unformatted permanent file index (PFI) entry as it existed after DUMPF
opened the file

e A copy of the permanent file index extension entry if an access directory existed
for the file !

The access fields in the permanent file index entry are updated when DUMPF opens the file.
Therefore, the access field information differs, depending on whether the user is or is not
privileged. This means that if the A option is specified, the last access date and time
used differ, depending on whether the user is or is not privileged.

SPECIFICATION OF THE FILES TO BE RELOADED

The set of files that LOADPF reloads can be specified by the names or the attributes of the
files. The set of files must have all the attributes specified. The USER and POOL
parameters specify file ownership, and the SELECT, DATE, and TIME parameters can specify
file usage and age.

If no file names are specified and the USER and POOL parameters are omitted, LOADPF archives
all files belonging to the user number under which LOADPF is executed.

Table 4-6 summarizes the interaction of the USER and POOL parameters.

If a file cannot be reloaded, LOADPF returns an appropriate message and continues processing
with the next file. LOADPF output includes a list of the files reloaded.

60459410 G 4-85

LOADPF Output

The LO parameter on the LOADPF control statement determines whether LOADPF produces a full
or a partial output listing. A full listing produces all of the headings described below,
while a partial listing contains only the first 13 headings. A full listing does not exceed
132 characters, excluding the carriage return, and a partial listing does not exceed 80
characters, excluding the carriage return. Dates appear as month, day, and year. Time
appears in a 24-~hour format. All values are decimal unless noted otherwise.

The following are the column headings used in a full LOADPF listing and the information
given under each heading.

Heading Description

VSN Volume serial number: this field is printed only the first time a file is
loaded from a VSN or when the report goes to a new page.

FSN File sequence number: hexadecimal count of files loaded.
NAME File name.
OWNER File owner: .individual user number, public user number (0), or pool name.

If SEL=I or SEL~O is specified, then the user number of the original file
owner is listed.

TYP File type: virtual code (VC) or physical data (PD).

FC File category: batch input file (B), input queue file (I), output queue
file (0), user file (U), system—generated drop file (S), or not defined (N).

RT Record type: ANSI fixed length (F), record mark delimited (R), undefined
(U), control word (W), system block (B), or lower CYBER (L).

BT Blocking type: character count (C), internal (I), or record count (K).

ACS Access permission set: read (R), write (W), execute (X), append (A) and/or

modify (M) permissions; no permissions (NONE); or purge-only (PURGE).
LOADPF lists the owner”s access permission set for private files and the
general access permission set for pool and public files.

EXT File allocation: segmentable (S) and/or extendable (X).
SL Security level: 1 through 8.
DEVICE Device name of mass storage file, An asterisk following the device name

indicates that a portion of the file resides on another disk.

DSET Name of device set.
FLEN Number of 512-word blocks in file.
FACT Accounting information.

4~-86 60459410 H

Heading Description

DORG Creation date (date of origin).

TORG Creation time (time of origin).

DOLA Date of last file access.

TLR Time of last file access.

DOLM Date of last file modification.

TOLM Time of last file modification.

EXP Expiration date (creation date plus retention period).

If SEL=I or SEL=0 is specified, the TYP column is deleted and the following column headings
replace ACS and EXT:

Heading Description
LID Destination LID for output and/or input queue files.
JCAT Job category of input queue files. For all other file types, this field is

left blank.

Figure 4-31 shows an example of a LOADPF output listing as produced by the following control
statement:

LOADPF ,U=* , AC=ACCTNO1 ,ACCTNO2 ,ACCTNO3 ,DEV=NT,VSN=CY2091 ,CY2088 ,LO=F, SEL=R.

Table 4~6. Interaction of USER and POOL Parameters for LOADPF

Privileged User Nonprivileged User

Files Processed No USER USER=1list USER=ALL No USER USER=usernol

No POOL= No POOL= No POOL= No POOL= No POOL=
POOL { plist | POOL | plist | POOL | plist |POOL | plist | POOL | plist

User private files X X

Listed user private X X X X
files (or public files
if user number 0 is
specified)

Listed pool files X X X X

All files regardless X X
of owner (including
public and pool
files)

tNonprivileged users can specify only their user number.

60459410 H 4-86.1/4-86.2

9 01%6S%09

L8=Y%

~——

CYBER 200 LOADPF 10D2219

VSN FSN

CY2091

CY2088

NAME

TRACE
CF639B
FT70249B

MAILIST
v3
RENAME
DELSRC
PFDL

DIAG22
€2700L
€27001S
CEBIN
MINK

CG520L
CG520TS
CONNECT
DISCONT
DNAD

-USER 14000
OWNER TYP
10955 PD
10955 PD
FTNDROP PD
9151 PD
9151 PD
BOBPOOL vC
10011 PD
BOBPOOL Ve
9151 PD
14000 PD
14000 Ve
10955 PD
POOLVRF vC
14000 PD
14000 vC
BP22 ve
BP22 ve
9151 ve

FC

ccCcacaa ccaccaca adca

cacaca

06/17/86
RT BT ACS

aERcEx WX AR

ccdaao®

13.29.21
EXT S
XMARW

XMARW
XMARW

[sNeoN o)

RW
XMARW
XR
RW
XR

XMARW
XMARW

[sNsEsNoNe]

XMARW
XMARW

PP DG M PPN M 2

oot o
=
w

XMARW
XMARW
XR
XR
XR

(2N NeNsKe]
Ead e

L

PrRrEPEPR e

e e

o e

DEVICE

PACK3B
PACK3B
PACK3B

PACK3B
PACK3B
PACK3B
PACK3B
PACK3B

PACK3B
PACK3B
PACK3B
PACK3B
PACK3B

PACK3B
PACK3B
PACK3B
PACK3B
PACK3B

DSET

DVST3B
DVST3B
DVST3B

DVST3B
DVST3B
DVST3B
DVST3B
DVST3B

DVST3B
DVST3B
DVST3B
DVST3B
DVST3B

DVST3B
DVST3B
DVST3B
DVST3B
DVST3B

FLEN

16
80
80

16
16
50
16
82

16
16
320
32
368

16
320
64
64
128

FACT

ACCTNO3
ACCTNO3
ACCTNO3

ACCTNO3
ACCTNO3
ACCTNO3
ACCTNO3
ACCTNO3

ACCTNO3
ACCTNOL
ACCTNOL
ACCTNO3
ACCTNO3

ACCTNOL
ACCTNO1
ACCTNO3
ACCTNO3
ACCTNO3

DORG

028685
020685
102284

032985
072484
061385
052485
051585

031185
053185
053185
041285
041285

053185
053185
061085
061085
061185

TORG

931
927
1357

927
1315
1250
1451
1503

1031
618
618
943
947

624
624
1809
1809
1452

DOLA

050885
020685
112184

060785
052985
061385
052985
061685

061785
053185
053185
050985
041585

053185
053185
061085
061085
061185

TLR

948
931
1321

1014

846
1251
1046
2356

812
618
618
1002
933

624
624
1810
1811
1456

DOLM

020885
020685
102284

060785
052985
061385
052885
051585

061285
053185
053185
041285
041285

053185
053185
061085
061085
061185

TOLM

932
927
1357

1007
846
1250
923
1503

833
618
618
943
947

624
624
1809
1809
1452

EXP

031085
030885
112184

042885
082384

071385
062385

061485

041085
063085
063085
051285
051285

063085
063085
071085
071085

071185

Figure 4-31.

LOADPF Output Example

MFLINK - PERMANENT FILE TRANSFER

The MFLINK control statement transfers a permanent file between VSOS and a remote system
(refer to figure 4-32). A permanent file request is embedded in the MFLINK statement. PIF
sends the request to the remote system specified on the statement. The request references
permanent files residing on the remote system.

The RHF software on the remote system determines the validity of the permanent file request
(refer to the RHF documentation for the remote system). The request must use the job
control language required by the RHF software on the remote system.

Under certain conditions, MFLINK attempts to recover a transfer that fails before the file
has been successfully received by its destination. The transfer is retried from the
beginning, and the earlier partial transfer is discarded. In every case, recovery is
attempted for batch MFLINK only. The EP or RT parameters can inhibit MFLINK from recovering
from some types of failures. Recovery error codes are listed in table 4-7. Refer to
appendix B of this manual for an interpretation of the recovery error codes.

Table 4-7. Recovery Error Codes

Recovery Error Code
8020 8230
8023 8231
8028 8232
8033 8233
8062 8234
8063 8235
8102 8236
8103 8305
8105 8306
8108 8307
8154 8308
8155 8309
8176 8310
8178 8311 (
8192 8312
8202 8313
8215 8314
8216 8315
8221 8317
8227 8318
8228 8322
8229 8323

For example, the following MFLINK statement contains a request for a copy of an IBM data
set. CYBER 200 RHF interprets the control statement and, as specified, sends the text
string on the JCS parameter to the system having logical identifier IBM. The RHF software
executing on the remote system receives the text string and interprets it as a request. As
specified in the text string, it sends a copy of the data set to the CYBER 200 system.
CYBER 200 RHF writes the data set copy on file A.

MFLINK,A,ST=IBM, JCS="GET,DSN=SEQ.DATA.SET". q

4
4-88 60459410 G Q

7

MFLINK,1fn,ST=1id,DD=dd,EP,RT, |JCS="stringl","string2",...,"stringn"

1fn

sT=1id

DD=dd

INPUT=filename

Name of the CYBER 200 file to be copied or to receive the file copy
(one to eight alphanumeric characters, beginning with a letter).

If the file is to be copied, it may be a local file, an attached
permanent file, a pool file, or a public file. If MFLINK is to
transfer data into the file, the file may be a local file, an
attached permanent file, or it may not exist. 1If the file is local
and MFLINK is to transfer data into the file, MFLINK returns the
file and creates a new file with the same name and with a record
type that is compatible with the data format declaration (as it
does when the file is nonexistent).

This parameter can be omitted if the specified control statement
sequence does not copy a file to or from the CYBER 200 system. If
specified, it must be the first parameter.

Specifies the logical identifier (LID) of the remote host to which
MFLINK is to send the directives record. The LID must be a
three—alphanumeric uppercase ASCII character string defined by your
site. You must specify the ST parameter on the first, and only the
first, MFLINK command of a series of MFLINK commands (an MFLINK
session) that are for the same remote host. The ST=1id
specification remains in effect during the entire session. A
successful completion of the initial MFLINK of a session saves any
recovery directives (user or accounting directives) sent to the
remote host. Then these recovery directives must not be specified
for the remainder of the MFLINK session. On subsequent MFLINK
commands in the same session, MFLINK sends the saved recovery
directives for you; however, any other MFLINK parameters not
specified revert to their default values. The occurence of the
ST=1id parameter on a MFLINK command initiates a new MFLINK session
with the specified remote host. Once you have entered an MFLINK
command with an ST=1id parameter, you can resume that session at
any time during your job by entering an MFLINK command without an
ST=1id parameter.

Data format declaration. 1If DD=dd is omitted, each host treats the
data transferred as being in the character set used for that system.

Cc8 Character data from a character set with more than
64 character codes. ASCII separator characters
(#1F, #1D, #1E, and #1C) define file structure (SIL
R format).

Cé6 Character data from a character set with 64 or fewer
character codes.

60459410 J

Figure 4-32., MFLINK Control Statement Format (Sheet 1 of 2)

4-88,1/4-88.2

—_—

Us Binary data with file structure indicated by control
words (SIL W format). The logical structure of the
file is transmitted via RHF protocol. No data
conversion is performed.

Uu Binary data without a logical structure. No file
structure or data conversion is performed.

EP Specifies that RHF should not do error recovery processing if
network problems cause a loss of the link during a file transfer.
Specifying the EP parameter inhibits the retry process. If EP is
omitted, MFLINK attempts to establish a new link and retries the
transfer request from the beginning of the request. Partial file
transfers are discarded. If EP is specified, it must precede the
JCS parameter.

RT Specifies the real-time action RHF is to take in response to error
conditions such as 1id disabled, system application limit exceeded,
or remote host busy, detected prior to establishment of a link with
a remote host. If RT is specified, MFLINK terminates with no
additional error recovery. Lf RT is omitted, the task is held in
suspeunsion until the resources become available. In certain
conditions, such as 1id disabled, when the condition may persist
for an indefinite period of time, MFLINK requests via the O display
‘that the system operator RETRY, ABORT, or WAIT (for up to 999
minutes) the task. If RT is specified, it must precede the JCS
parameter.

JCS=string; One or more text strings sent to the other system. Each string
must be delimited by double quote (") characters. (JCS and INPUT
are mutually exclusive.)

If the JCS parameter is specified, it must be the last parameter on
the MFLINK execute line.
If both the JCS and INPUT parameters are omitted, then I=INPUT is
assumed.

INPUT=filename Name of the CYBER 200 file containing the text string to be sent to
the other system. A text string in the file must appear as it

would if entered on the JCS parameter without the double quote
delimiters.

If INPUT=filename is specified, text strings are read from the
specified file. (JCS parameter cannot be specified.)

If the keyword INPUT is specified and =filename is omitted, text
strings are read from file INPUT. (JCS parameter cannot be
specified.)

If the INPUT and JCS parameters are omitted, then I=INPUT is
assumed.

Figure 4-32. MFLINK Control Statement Format (Sheet 2 of 2)

60459410 J 4-89

CHARACTER CODE CONVERSION

The DD parameter on the MFLINK statement is used to specify required character code
conversion. If the data format declaration is UU or US, no character code conversion is

performed. If the data format declaration is C8, C6, or omitted, character code conversion
is performed if necessary.

Character code conversion is necessary when the file transfer is between systems using
different character code sets. For example, a CYBER 170 system uses both 6-bit and 12-bit
character codes, while a CYBER 200 system uses only 8-bit character codes.

LOGICAL STRUCTURE CONVERSION

RHF copies logical file structure (end—of-record, end-of-group, and end-of-file separators)
as specified by the DD parameter on the MFLINK statement. Table 4-8 lists the logical
structure conversion RHF performs and the SIL logical record format in which VSOS writes a
received file,

Table 4~8. Logical Structure Conversion

MFLINK
DD=dd RHF Conversion SIL Format
Parameter

uu No logical structure conversion. RHF trans- Undefined (U) format.
fers the file as string of bits terminated by
an end-of-information protocol parameter.

Us Logical structure indicated by file structure Control word (W) format.
control words.

c8 Logical structure indicated by ASCII unit Record mark (R) format.
separator, group separator, and file
separator characters., The file contains
character data from a character set with
more than 64 character codes.

Co The file contains character data from a Record mark (R) format.
character set with 64 or fewer character
codes. Logical structure indicated by
ASCII unit separators, group separators,
and file separator characters. C6 and C8
are treated identically by VSOS but may be
treated differently by the remote host.

omitted The file is treated by both the sending and Record mark (R) format.
the receiving host as being in the native
character set of that host. Logical struc-
ture indicated by ASCII unit separators,
group separators, and file separator
characters.

For FORTRAN data conversion information on sending files to a remote host, refer to
appendix E in this manual. Refer to chapter 3 for more information on the operation of
RHF permanent file transfers. In particular, note the description of direct access file
transfers.

4-90 60459410 E

MFQUEUE—EXPLICIT FILE ROUTING

The MFQUEUE control statement submits an output file or a job file to the local system or to I
a remote system from the CYBER 200 (refer to figure 4-33).

1fn

ST=1id

DD=dd

INPUT=filename

MFQUEUE,1fn,ST=1id ,DD=dd,DC=dc, SAVE, {JCS="string1","string2",...,"Stringn"} .

Name of the CYBER 200 file to be copied to the remote system (one
to eight aphanumeric characters, beginning with a letter). This
parameter is required.

The RHF logical identifier of the local or remote system (three
ASCII alphanumeric characters) to which the file named by lfn is
sent. This parameter is optional. If the specified 1id is the
local host, and DC is either IN or IX, the queue file is submitted
as a job to the local host, and the job”s output is sent to the
remote system specified by the default output LID listed in the Q,0
or H,0 display. If the specified lid is the local host, and DC is
neither IX or IN, the queue file is sent to the remote system
specified by the default output LID. If ST is not specified and if
MFQUEUE is executing from within a batch job, the queue file is
sent to the system that submitted the original batch job. If ST is
not specified and if MFQUEUE is performed interactively, the queue
file is sent to the remote system specified by the default output

LID.

Data format declaration. RHF performs any conversion necessary to
maintain the specified data format and job structure (see Character
Code Conversion and Logical Structure Conversion in the description
of MFLINK). If DD=dd is omitted, each host treats the data
transferred as being in the character set used for that system.

c8 Character data from a character set with more than
64 character codes. ASCII separators (#1F, #1D,
#1E, and #1C) define file structure (SIL R format).

Cé The file contains character data from a character
set with 64 or fewer character codes. C6 and C8 are
treated identically.

Us Binary data with structure indicated by control
words (SIL W format). The file structure is
transmitted via RHF protocol. No data conversion is
performed.

Uu Binary data without a file structure. No file
structure or data conversion are performed.

60459410 J

Figure 4-33. MFQUEUE Control Statement Format (Sheet 1 of 3)

4-91

DC=dc Optional disposition code. 1If DC is not specified, disposition of

LP (print) is assumed.

IN Route the file to the input queue of the remote
system specified by the ST parameter. The generated
output files are returned as follows:

e If MFQUEUE is executing from within a batch
job, the output is returned to the system
that submitted the original batch job.

If the system that submitted the original
batch job was the local system, the output is
returned to the remote system specified by
the default output LID listed in the Q,0 or
H,0 display.

e If MFQUEUE is performed interactively, the
output is returned to the remote system
specified by the default output LID.

IX Route the file to the input queue of the remote
system specified by the ST parameter.

If the LID specified by the ST parameter is a remote
system, the generated output is disposed of by the
remote system. If the LID specified by the ST
parameter is a local system, the generated output is
sent to the remote system specified by the default
output LID.

LP Route the file to be printed on the remote system.

CP Route the file to be punched in hollerith code to
the remote system.

P8 Route the file to be punched in 80 column binary to
the remote system.

PB Route the file to be punched in checksummed data
form to the remote system.

SP Route the file as special output to the remote
system.

If the LID specified by the ST parameter is the local system, the file is sent to
the remote system specified by the default output LID.

® 4-92

Figure 4-33. MFQUEUE Control Statement Format (Sheet 2 of 3)

60459410 J

SAVE Optional standalone parameter to save the lfn. If SAVE is
specified, MFQUEUE will copy 1fn to a local file and the copied
file is then sent to the remote system. Thus, 1fn remains local.
(This behavior is identical to what happens if 1fn is an attached
permanent file.) 1If SAVE is omitted, and if 1fn is a local file,
1fn is sent to the remote system. If SAVE is specified, it must
precede the JCS parameter.

JCS=string; One or more text strings sent to the other system. Each string
must be delimited by double quote (") characters.

INPUT=filename Name of the CYBER 200 file containing the text string to be sent to
the other system. The text string must appear as it would if
entered on the JCS parameter without the double quote delimiters.

If INPUT=filename is specified, text strings are read from the
specified file. (The JCS parameter cannot be specified.)

If the keyword INPUT is specified and =filename is omitted, text
strings are read from file INPUT. (The JCS parameter cannot be
specified.)

If the INPUT parameter is not specified, text strings from JCS
parameter are used. If neither JCS nor INPUT is specified, no
explicit text is sent to the other system.

Figure 4-33. MFQUEUE Control Statement Format (Sheet 3 of 3)

To explicitly route an output file by using the MFQUEUE statement, specify the name of the
output file, the identifier of the system to which the file is sent, and any job control
statements that may be required by the other system.

If a job file is being sent, the MFQUEUE statement specifies the name of the file, the
identifier of the system to which the file is sent, and any job control statements that may
be required by the other system. To determine the appropriate job control statements, refer
to the RHF documentation for the remote system. The file data must have the job structure
required by the remote system. Output from job execution is routed to an output device on
the remote system; it is not returned to the CYBER 200 system on which the job originated.

Refer to appendix E in this manual for FORTRAN data conversion information on sending files
to a remote host.

A successful completion of MFQUEUE results in the following message:
1fn MFQUEUED - JDN = jdn
1lfn Logical file name of the file being MFQUEUEd.

jdn Job descriptor number assigned by VSOS to the MFQUEUEd file while in the
output queue.

60459410 J 4-92.1/4-92.2

NORERUN - SET NORERUN STATUS

The NORERUN control statement changes the default status for the job from rerun to

norerun, so that when the system is reautoloaded after a system failure, the batch input
file is destroyed.

The NORERUN control statement is valid only within a batch job. It is executed directly
by the batch processor.

Figure 4-34 shows the NORERUN format., An example of NORERUN use is shown in figure 4-35.

NORERUN.

Figure 4-34. NORERUN Control Statement Format

RESOURCE, TL=8.

COMMENT. Job reruns if the system fails here.
NORERUN.

COMMENT . Job does not rerun if the system fails here.
RERUN.

COMMENT. Job reruns if the system fails here.

Figure 4-35. NORERUN/RERUN Example

60459410 E 4-93

OLE - OBJECT LIBRARY EDITOR

l The OLE control statement generates any of the following file types:

) A library file. A library file contains code modules and a directory of module
names and entry points. The LOAD utility uses the library files specified on its
LIBRARY parameter to satisfy external references. It copies the library modules
needed to satisfy external references and to obtain the entry address specified on
its ENTRY parameter.

° A modmerge file. This file is a collection of modules without a directory. When a
LOAD statement references a modmerge file, LOAD copies all modules in the file.
Because a LOAD statement can specify only ten object code files, specifying modmerge
files enables specification of more code modules for a controllee.

° A dynamic library. A dynamic library file contains code modules and a directory of
entry points. The file resides in user space below #800000000000. This library may
be dynamically or statically linked by LOAD for any controllee loaded with the
dynamic library specified. Statically linking to a dynamic library can mean the
code is not moved to the controllee but is left in the dynamic library. This means
the dynamic library must be mapped in by the system whenever the controllee
executes., Dynamic linking to a user dynamic library means that the linker links any
modules that are dynamically called during the execution of the controllee.

OLE can also list modules and charactetristics of the modules on library or modmerge files
without creating a new file.

As many as 50 input files can be specified on the OLE statement. An OLE input file must be
a library file, a modmerge file, or an object code file generated by a CYBER 200 compiler or
assembler. An input file can be a local file, an attached private or pool file, or a public
file. The total number of modules and entry points cannot exceed 3000.

Specify the name of the library or modmerge file on the NEWLIB or MODMERGE parameter and the
name of the listing file on the OUTPUT parameter. OLE searches for the specified file. The
following is the result of the search.

If the file OLE
Does not exist or is unattached, requests a new local file.
Exists as a local file, returns the existing file and requests a new

local file.

Exists as an attached pool file or requests a new local file.
public file with the same name,

Exists as an attached private uses the existing private permanent file.
permanent file,

Figure 4-36 shows the OLE format. Parameters can appear in any order, but subparameters
cannot be separated.

4-94 : 60459410 F

NEWLIB=1iblfn
OLE, INPUT=1fn-1ist, | MODMERGE=modlfn | ,OMIT=sfn,mod-1ist,SELECT=sfn,mod~1list,LO=opt,
OUTPUT=1fn/len,DLIB=1fn,0RIGIN=bitaddr.

INPUT=1fn-1list List of 1 through 50 file names, separated by commas, whose
modules are to be written to the file specified by the NEWLIB or
MODMERGE parameter.

If the INPUT parameter is omitted, only the parameters LO and
QUTPUT are valid.

NEWLIB=1iblfn Name of file that is to contain the new library being created.
The name must consist of one through eight letters or digits,
beginning with a letter, and can duplicate a file name specified
with the INPUT parameter.

If the NEWLIB, MODMERGE, and DLIB parameters are omitted and INPUT
is specified, default is NEWLIB.

MODMERGE=mod1fn Name of file that is to contain the modmerge file. The name must
consist of one through eight letters or digits, beginning with a
letter. The name can be the same as the name of a file specified
with the INPUT parameter. No default name exists.

OMIT=sfn,mod-1ist List of modules (mod-list) on file sfn to be omitted from the
library or modmerge file.

One OMIT parameter can be specified for each input file that does
not have a SELECT parameter specified.

SELECT=sfn,mod-list List of modules, mod-list, on file sfn to be included in the
library or modmerge file. The SELECT parameter can be specified
for each input file that does not have an OMIT parameter specified.

LO=opt Listing option:

1fn-list List of file names, separated by commas, whose
contents are to be listed. The module name,
length, creation date, and entry point name for
each file are listed. OLE always lists the
contents of the library or modmerge file.

0 Suppress all listings.
If the LO=opt parameter is omitted, only the library or modmerge
file is listed. Output appears on the file specified by the
OUTPUT parameter.
OUTPUT=1fn/len File to which listing is written:
1fn Name of file. Must consist of one through eight
letters or digits, beginning with a letter. When

the OUTPUT parameter is omitted, default is OUTPUT.

len Number of 512-word blocks in file. When /len is
omitted, default is #10.

Figure 4-36. OLE Control Statement Format (Sheet 1 of 2)

60459410 F 4-95

DLIB=1fn : OLE is to construct a user dynamic library named filename. DLIB
is mutually exclusive with the NEWLIB and MODMERGE parameters.
OLE checks all modules going to the library to make sure they can
reside in a dynamic library.

ORIGIN=bitadr Virtual bit address at which the dynamic library resides when the
controllee executes. This address must be at a lower number than
the ad<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>